本书是在作者对粗糙集、模糊集相关理论研究和应用的基础上,将一些结果和应用加以汇总、总结、整理而成。主要内容包括:粗糙集理论的基本概念;模糊集理论的基本概念;粗糙集与模糊集的互补性研究及其应用;对不完备信息系统中粗糙集理论的模型的扩充研究;粗糙集在中医胸痹证候识别中的应用研究。 本书适合知识发现、数据挖掘、人工智能、决策分析、中医研究及应用等领域的科研人员和高校师生阅读。
本书系统阐述了有限单元法的基本原理及其工程应用,包括弹性力学平面问题和空间问题、薄板、薄壳、厚板、厚壳、弹性稳定、塑性力学、大位移、断裂、动力反应、徐变、岩土力学、混凝土与钢筋混凝土、流体力学、热传导、工程反分析、仿真计算、网络自动生成、误差估计及自适应技术。本次第三版新增了渗流场分析的夹层代孔列法、岩土工程的极限分析等,重编了大体积混凝土的人工冷却和混凝土坝仿真分析的复合单元。 本书内容丰富,取材新颖,概念清晰,提出了一些新的计算方法,并特别重视理论联系实际,兼有科学性和实用性。 本书可供土木、水利、机械等工程专业的设计、科研人员使用,也可供高等院校有关专业的师生参考。
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematic性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
Thiook is a standard for a plete description of the methods for unconstrained optimization and the solution ofnonlinear equations....this republication is most wele and this volume should be in every library. Of course, there exist more recent books on the topics and somebody interested in the subject cannot be satiated by looking only at thiook. However, it contains much quite-well-presented material and I remend reading it before going ,to other.publications.
本书是华夏英才基金资助出版的专著,是龙驭球院士及其研究组20多年来在新型有限元方面研究成果的系统论述。全书共20章。除首尾两章外,其余18章分为3篇:篇是变分原理进展,介绍分区和含参变分原理2项成果;它们为构造新型有限元起理论指导作用。第2篇是有限元法进展初论,重点介绍广义协调元;这是在协调元与非协调元之间另辟的新路,使收敛问题得到合理解决,单元构造方案可以灵活优选,学科内容得到充实更新;补充介绍4项成果,包括分区混合元法、解析试函数法、四边形面积坐标法和样条函数有限元法,在本书中起锦上添花作用。结合7项成果的论述,书中还介绍了相关的新单元,总共108个,汇集在一起,可供参考。 本书可作为高等学校力学、土木、机械等专业研究生和高年级本科生的教材和参考书,也可供相关领域教师和科技人员参考。
该书系统地阐述了有限单元法的基本原理及其在工程问题中的应用,包括弹性力学平面问题和空间问题,薄板,薄壳,厚板,厚壳,弹性稳定,塑性力学,大位移,断裂,动力反应,徐变,岩土力学,混凝土与钢筋混凝土,流体力学,热传导,工程反分析,仿真计算,网格自动生成,误差估计及自适应技术。 该书内容丰富,取材新颖,概念清晰提出了不少新的计算方法,并特别重视理论联系实际,兼有科学性和实用性,可供土木,水利,机械等工程专业的设计,科研人员使用,并可供高等院校有关专业的师生学习参考
本书主要讨论用于求解微分方程并具有广泛应用背景的波形松弛方法理论及应用。除绪论外,全书共11章,基本内容包括初值问题与周期问题的连续及离散波形松弛方法的收敛性、波形松弛算子的谱理论、波形松弛方法的加速算法,以及其他一些常用方法。全书论证详尽,系统性强,各章内容自成体系,又相互联系。为便于读者理解和阅读,在内容安排上,由浅人深,循序渐进,详略得当。 本书可供计算数学、应用数学、电路与系统以及计算机相关专业研究生阅读,同时也可作为理工类相关专业教师以及从事科学和工程计算的科研工作者的参考书。
本书是在作者对粗糙集、模糊集相关理论研究和应用的基础上,将一些结果和应用加以汇总、总结、整理而成。主要内容包括:粗糙集理论的基本概念;模糊集理论的基本概念;粗糙集与模糊集的互补性研究及其应用;对不完备信息系统中粗糙集理论的模型的扩充研究;粗糙集在中医胸痹证候识别中的应用研究。 本书适合知识发现、数据挖掘、人工智能、决策分析、中医研究及应用等领域的科研人员和高校师生阅读。
丛书(第2辑):拉格朗日乘子定理》从一道2005年全国高中联赛试题的高等数学解法谈起,详细介绍了拉格朗日乘子定理的相关知识及应用,《 丛书(第2辑):拉格朗日乘子定理》共9章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。
本书主要讨论用于求解微分方程并具有广泛应用背景的波形松弛方法理论及应用。除绪论外,全书共11章,基本内容包括初值问题与周期问题的连续及离散波形松弛方法的收敛性、波形松弛算子的谱理论、波形松弛方法的加速算法,以及其他一些常用方法。全书论证详尽,系统性强,各章内容自成体系,又相互联系。为便于读者理解和阅读,在内容安排上,由浅人深,循序渐进,详略得当。 本书可供计算数学、应用数学、电路与系统以及计算机相关专业研究生阅读,同时也可作为理工类相关专业教师以及从事科学和工程计算的科研工作者的参考书。