本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
三角恒等变形是中学数学的难点之一,《三角恒等式》全面系统地总结了中学课程中三角恒等变形的内容,对三角恒等式的证法和技巧做了分类指导,着重解题思路的分析.内容包括同角函数关系、加法定理、反三角函数、三角形的边角关系、三角恒等变形的各种应用以及代数对三角恒等变形的应用等。 《三角恒等式》精选例题、习题218则,习题还附有解法提示,可供中学师生、中学程度的自学青年作为学习三角恒等式的辅助读物。
【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematica在线性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
该书综述了有限元方法的基础,包括读者在解决各自存在的工程问题以及理解该知识点更先进的应用所必须了解详细的基础理论和工作室实例。为了让读者更清晰地了解有限元的研究进展,该版本在内容上作了明显的重排,将两个新章节放在前面:弱式;变分形式;多维场问题;网格自动生成;平板弯曲和壳理论;无网格技术的进展。
曹定爱编著的《累积法理论(精)》在介绍数理统计的基本概念、参数估计理论、小二乘估计和联立方程式的数量分析等内容的有关理论知识的基础上,系统地提出累积法估计理论,即建立了一种新的估计一般线性回归模型中未知参数的参数估计方法,并推广其应用.其主要涉及:普通累积和的概念及其统计特征,普通累积法及其估计理论(包括普通累积法估计与小二乘估计、普通累积法估计法与工具变量法等知识的介绍),一元线性回归模型中普通累积法估计与小二乘估计,多元线性回归模型中普通累积法估计与小二乘估计,多级普通累积法的估计法和普通累积法估计法在联立方程组模型参数估计方面的推广等内容。 《累积法理论(精)》适用于经济分析、金融分析、保险工程、证券分析、计算数学、工程数学、统计分析等领域的高年级本科生、研究生以及高校
本书详细介绍了计算机领域中常用的数值计算方法,主要内容包括插值与逼近、数值积分与数值微分、非线性方程的数值解法、线性方程组的数值解法、常微分方程的初值问题的数值解法等。本书不仅系统介绍了求解各类数学问题的基本的数值计算方法和相关基础理论,而且补充了相应的优化计算方法——神经网络算法。为了方便教学,作者还给出了基于MATLAB语言的范例源代码,便于师生上机实习。 本书可作为高等院校工科专业本科学生的教材,也可作为相关科研人员的参考书。
为了适应“计算物理一科学与工程计算一高性能计算”发展的需要,本书专门为在计算机(尤其是超高速大型计算机)上大规模数值求解抛物型方程各种类型的适定问题而写。本书将在解决实际问题计算过程中可能涉及到的各类问题尽可能地加以叙述,但主要是围绕典型方程所采用的有限差分方法的格式和技巧展开的。力求简明扼要,通俗易懂,学了能用。 本书共分10章,包括:抛物型方程定解问题的提出、有限差分方法的基础知识、求稳定性条件的方法、抛物型方程的差分格式、非线性抛物型方程、高于二阶的抛物型方程和抛物型方程组、退化抛物型方程、抛物型方程有限差分的并行计算、数值计算中的若干问题以及数值计算的实际应用之例。 本书可作为从事与抛物型方程相关的广大科技工作者的使用手册和高等院校的大学生和研究生学习“偏微分方程数值解”
本书介绍了在科学与工程实际工作中常用的数值计算算法的原理和Visual C++编程方法。本书分为7章,前6章分别讨论了复数运算、矩阵运算、线性代数方程组的求解、非线性方程与方程组的求解、插值和数值积分等的面向对象编程方法,涉及使用频率非常高的近90个基本算法,按功能设计成了6类。第7章将这些算法类集成到一个静态库和一个动态库中,可以直接使用。每章节都用Visual C++程序示例了算法和算法库的调用方式。 本书适合涉及科学与工程数值计算工作的科研人员、工程技术人员、管理人员以及大专院校相关专业的师生参考阅读。
本书阐述了科学与工程计算中的基本理论和方法,包括数值分析中的基本概念和基础知识、插值法、数值积分与数值微分、函数的*逼近、线性方程组的直接解法、解方程和方程组的迭代法、矩阵特征值与特征向量的计算、常微分方程的数值解法、偏微分方程的数值解法、MATLAB平台上的数值实验等。书中有丰富的例题、练习题和数值实验习题。本书注重内容的实用性,强调数值方法的思想和原理以及在计算机上的实现。选材深浅适度、系统性强,文字通俗易懂。 本书可作为高等学校理工科专业本科生、研究生数值分析课程的教材或教学参考书,也可供从事科学与工程计算的科技人员学习参考。
本书着重推介一种有别于Brun筛法和Selberg筛法的新型优化筛法。其特点是简单易懂、便于操作、适用性广。 作为该优化筛法的应用实例,书中对至今用其他方法尚未解决的14个数化问题逐个进行了论证。同时,对每个命题都给出了具体的求解方法,运算程序及实筛数据。书末附有20万以内的素灵敏表用于数据查验。 本书可供相关专业的教学与科研工作者阅读,亦可供大学数理系高年级学生、研究生参考。
本卷包括一元微积分、多元微积分、复变函数、常微分方程、矩阵分析与线性系统、系统辨识、偏微分方程、积分方程共8部分内容。书中从理论与应用方面深入浅出地阐述了各分支中的基本概念、基本理论与基本方法。内容注重背景,强调应用,便于读者加深理解、掌握与应用。本书可供理、工、农、医、经管等领域的广大科技人员,大、中专院校教师、学生及研究生使用。
“数值分析”是解决工科数学问题和工程实际问题的重要理论基础和实用工具,也是工科各专业博士研究生入学考试的内容。为了帮助广大学生更好地学习和掌握数值分析课程的理论精髓和解题方法,我们根据清华大学出版社出版的由李庆扬、王能超、易大义编写的《数值分析》教材的章节顺序,以其内容为基础编写了这本辅导教材。本书共分9章,每章均有重点、难点全析和习题全解两个板块。书末附了三套自测试题及答案,帮助学生自我检测学习效果。 (1)重点、难点全析:精练地列出了各章的主要知识点,理清了各知识点之间的脉络联系,列出了主要定理及其相关推论、重要公式等,帮助读者融会贯通,系统理解各章的体系结构,奠定扎实的理论基础。 (2)习题全解:对数值分析各章的习题作了详细解答,在解答过程中。对重点和难点习题进行了
《高精度无网格重心插值配点法:算法、程序及工程应用》论述了基于重心型插值的高精度无网格配点法的基本算法和计算程序;详细讨论了常微分方程(组)边值问题和初值问题、积分方程和积分-微分方程、二维椭圆型偏微分方程边值问题、波动方程和热传导方程的重心插值配点法计算公式和程序;论述了不规则区域上重心插值配点法的具体算法;给出了重心插值配点法在结构变形、屈曲和振动分析方面的算法和程序;通过大量算例说明重心插值配点法的有效性和计算精度。 《高精度无网格重心插值配点法:算法、程序及工程应用》可供从事数值分析领域研究的工程技术人员和高等院校计算数学、计算力学、土木工程等专业本科生、研究生参考。
本书的主要内容是讲解工程领域中经常使用的各类数值求解方法。作者Steven Chapra博士执教于塔夫茨大学土木和环境工程系;而作者Raymond P.Callale是密歇根大学的名誉教授,在二十多年的教学中,他曾讲授了计算机、数学和环境工程领域中的多门课程。两位作者在数值分析方面有着深厚的理论根基和广博的实践知识。本书当前是第五版,随着数值方法和计算机的发展,作者不断地更新其中的内容,所以本书是数值方法方面极富价值的教科书,也可以作为广大工程技术人员一本不可多得的优秀参考书。
《有限元法及ANSYS程序应用基础》内容分为两大部分:有限元法基础和ANSYS程序应用基础。有限元法基础的内容有绪论、有限元法的直接刚度法(直梁和平面刚架)、弹性力学基础知识、平面问题的有限元法(三角形单元和矩形单元)、等参数单元;ANSYS程序应用基础的内容有ANSYS程序应用。《有限元法及ANSYS程序应用基础》内容由浅入深,主次分明,通俗易懂,便于自学。
these notes developed from a course on the numerical solution of conservation laws first taught at the university of washington in the fall of 1988 and then at eth during the following spring. the overall emphasis is on studying the mathematical tools that are essential in developing, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. a reasonable understanding of the mathematical structure of these equations and their solutions is first required, and part i of these notes deals with this theory. part ii deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. i have stressed the underlying ideas used in various classes of methods rather than presenting the most sophisticated methods in great detail. my aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding.
格子Boltzmann方法是近十几年来国际上发展起来的一种流体系统建模和模拟新方法,其思路与传统的流体模拟方法完全不同,具有许多常规方法所不具有的优势。它所提出的思维方式和建模手段,为流体力学的研究带来了新的思路,开创了流体描述和模拟的一个崭新领域。本书试图对格子Boltzmann方法的基本原理、常用模型、发展状况进行较为系统的描述,并结合作者近年的研究工作,介绍该方法的边界处理方法、作用力描述及非标准模型等基本问题,以及在传热传质、多相(多组eft)流动、多孔介质流动和微尺度流动等方面的应用进展,以便读者了解格子Boltzmann方法的全貌。 本书可供数学、物理、力学、能源、材料、化工等领域从事流体力学工作的研究人员参考。