本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
三角恒等变形是中学数学的难点之一,《三角恒等式》全面系统地总结了中学课程中三角恒等变形的内容,对三角恒等式的证法和技巧做了分类指导,着重解题思路的分析.内容包括同角函数关系、加法定理、反三角函数、三角形的边角关系、三角恒等变形的各种应用以及代数对三角恒等变形的应用等。 《三角恒等式》精选例题、习题218则,习题还附有解法提示,可供中学师生、中学程度的自学青年作为学习三角恒等式的辅助读物。
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematica在线性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
本书深入讨论Krylov子空间算法的核心思想和理论,结合算法的推导过程,介绍Krylov子空间算法和预处理技术的**进展,同时介绍Krylov子空间算法及预处理技术在电磁计算和数字图像处理中的应用.
本书对扩展有限单元法的理论、应用和程序进行了较为详尽的论述。全书共分9章,包括4部分内容。第1部分(第1章~第3章)系统地综述扩展有限单元法理论的研究进展和主要应用,简述扩展有限单元法理论的基础知识(水平集法和线弹性断裂力学基础) ;第2部分(第4章)详细地论述扩展有限单元法的基本理论;第3部分(第5章~第8 章)详细介绍扩展有限单元法在教聚裂纹扩展、非均质问题、动态断裂问题和剪切带演化领域中的应用;第4部分(第9章)介绍扩展有限单元法的程序设计,给出主要的程序代码,将有利于读者尽快掌握扩展有限单元法的程序实现,并在此基础上应用该方法解决工程实际问题。
本书阐述自适应Fourier分解(AdaptiveFourierDecomposition,AFD)及单分量函数论的数学理论及应用。按照理论发展的顺序,第3章单分量函数论应该在第2章AFD理论之先的,后者作为单分量函数分解的特殊情况。尽管如此,我们选择优先讲述AFD的理论。第3章通过单复变量几何分析的研究建立了单分量函数的理论。第4章讲述单分量函数论对数字信号处理的奠基性的应用,其中包括由AFD引出的Dirac型时间-频率分布的理论,以及对经典Heisenberg型测不准原理的改进。在第5章中,应用调和分析及单复变量分析方法,我们发展了前移及后移不变子空间的理论,并将该研究用于频带保持、相位重构、以及Bedrosian方程式的解。AFD与单分量函数的思想贯穿一维单复变结构下的两个典型流型,即圆与直线(第2章);高维两种复结构(Clifford代数及多复变量)之下的Euclid空间、实球壳以及多环面
无
本书系统地论述了有限元方法的数学基础理论。本书以椭圆偏微分方程的边值问题为例,介绍了协调有限元方法以及非协调等非标准有限元方法的数学描述、收敛条件和性质、有限元解的先验和后验误差估计以及有限元空间的基本性质,其中包括作者多年来的部分研究成果。
THE major part of this book (Chapters I, II, III and V) is not very different from what was in the first two English editions (1959 and 1970).This is a natural result of the fact that the basic equations and conclusions of elasticity theory have long since been established. . The second edition included a chapter on the theory of dislocations in crystals, written jointly with A.M.Kosevich, which has been only slightly changed in the present edition.
《 数学中的小问题大定理 丛书(第2辑):拉格朗日乘子定理》从一道2005年全国高中联赛试题的高等数学解法谈起,详细介绍了拉格朗日乘子定理的相关知识及应用,《 数学中的小问题大定理 丛书(第2辑):拉格朗日乘子定理》共9章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。
《数值计算方法与应用》详细介绍了科学计算领域中常用的数值计算方法,主要内容包括插值与逼近、数值积分与数值微分、非线性方程及非线性方程组的数值计算方法、线性方程组的数值计算方法、常微分方程初值问题的数值计算方法等。《数值计算方法与应用》不仅系统介绍了求解各类数学问题的*基本的数值计算方法和相关基础理论,而且补充和新增了相应的优化计算方法。为了方便教学,作者给出了相关实例的MATLAB源程序,便于师生上机练习。《数值计算方法与应用》的**特色是以提出问题-分析问题-解决问题为主线,先有问题背景后有解决问题的模型、算法和程序设计的教学和教材体系,体系严密,系统性强。除第2章外每章给出典型例子和一定数量的习题,并在书后给出了习题解答。
本书共四章,包括解析平面几何证明题,解析平面几何中除证明题以外的其他问题,解立体几何,解解析几何,后又提供了8个附录,以丰富本书内容。
本教材是美国华盛顿州立大学David V.Hutton教授为大学本科生编写的教材。为了更适于中国学生学习,根据中国教学内容结构和专业学习要求,我们对本书进行了缩编。 缩编后的内容包括:有限元的基本概念;刚度矩阵.弹簧与杆单元;桁架结构:直接刚度法;弯曲单元;加权余量法:一般单元列式的插值函数:在固体力学中的应用;结构动力学;共8章及3个附录部分。同时给出了目录的中文翻译和英汉对照词汇表。 本教材适用于土木工程、工程力学及机械工程等专业,也可作为工程技术人员的参考书。
本书共十二章,包括绪论、预备知识、杆系结构有限元、弹性力学平面问题有限元、空间问题与轴对称、板壳分析初步、板壳有限元分析(续)、弹性力学广义变分原理及其有有限元中的应用、有限元动力分析、非线性有限元初步与材料非线性分析、弹性稳定性与几何非线性分析和其他数值方法(含加权余量、半解析、样条有限元和边界单元法)。前六章供本科高年级学生学习有限单元法用,并可供硕士研究生和部分专业博士生选用。本书取材适宜,由浅入深,内容丰富,引入了不少新内容和科研成果;论述严谨、细致,便于学习;较重视原理与方法的论证,但也有足够的算例,几乎章章都有配书教学软件,便于应用和编程参考。 本书可作为土木、交通、水利和工程力学等专业的本科、硕士研究生教材,也可供有关工程技术人员参考。
《有限元法及ANSYS程序应用基础》内容分为两大部分:有限元法基础和ANSYS程序应用基础。有限元法基础的内容有绪论、有限元法的直接刚度法(直梁和平面刚架)、弹性力学基础知识、平面问题的有限元法(三角形单元和矩形单元)、等参数单元;ANSYS程序应用基础的内容有ANSYS程序应用。《有限元法及ANSYS程序应用基础》内容由浅入深,主次分明,通俗易懂,便于自学。
小波分析是当前数学科学中一个迅速发展的新领域,它是在傅里叶分析的基础上发展起来的一种新时频分析方法,和傅里叶分析相比它有着许多本质上的进步。因此,小波分析的发展具有重大的理论和应用的双重意义。本书是学习小波分析理论的入门书籍,因而,避免了大量引用枯燥晦涩的数学推导,采用了通俗易懂的数学语言和针对性、实用性强的实例来介绍小波分析的基本理论知识及其应用。这样既便于培养读者的学习兴趣,同时也能够使设计者尽快地使用小波分析来解决实际问题。 全书共分8章,主要包括:傅里叶分析、窗口傅里叶变换、小波变换、多分辨率分析与正交小波、正交小波的快速算法、小波分析在滤波和消噪方面的应用、小波分析在信号检测方面的应用与二维小波变换和图像处理等知识。本书语言通俗易懂,内容丰富翔实,深入浅出,既可
本书介绍了MATLAB和LTNGO的常用编程方法。书中设计的数学实验既有趣味数学问题实验,高等数学的微积分实验。线性代数的矩阵运算和求解方程组实验。概率中的模拟实验和中心极限定理实验,也有微分方程实验和应用广泛且有实用价值的神经网络实验,还有充满趣味的数字水印实验、数独实验。所有这些实验都是简单介绍原理,然后强调应用。并有完整的程序实现,便于读者直接上机实验。本书内容广泛,但并不迫求高深理论,程序简洁易懂,让使用者容易掌握,做到学有所获。