本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、艾滋病和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从
本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
本书共九章,重点通过基础知识讲解、算例剖析和技巧提示,引导读者熟悉GPU并行算法、CUDA Fortran基础知识,进而掌握基于CUDA Fortran的GPU高性能计算应用软件设计方法。其中,第1章介绍相关研究背景;第2~6章介绍基于CUDA Fortran的GPU通用计算基本概念、编程方法与优化原则;第7~9章介绍基于MPI+CUDA的N-S方程数值求解。书中的示例的构思以及分析过程是本书**价值的部分,读者通过阅读这些内容,对GPGPU技术做到融会贯通、举一反三,只要掌握了这些简单的示例,更复杂的问题也能迎刃而解。在本书的帮助下,读者不需熟悉GPU硬件或者CUDAC(虽然熟悉这两者有助于使用本书)就可完成GPU的学习和使用。
俄罗斯历来注重数学理论的研究,并且具有鲜明的特色,在计算数学领域的研究也有许多独特之处。 由H.C.巴赫瓦洛夫、热依德科夫、柯别里科夫所著的《数值方法(第5版俄罗斯数学教材选译)》是数值方法方面的经典教材,在俄罗斯影响很大。本书视角新颖,内容翔实,阐述系统,主要内容包括:计算误差,插值与数值微分,数值积分,函数逼近,多维问题,数值代数方法,非线性方程组和*化问题的解,常微分方程、偏微分方程和积分方程的数值求解方法。 本书可供高等院校计算数学及相关专业的学生、教师和研究人员使用参考。
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
本书对扩展有限单元法的理论、应用和程序进行了较为详尽的论述。全书共分9章,包括4部分内容。第1部分(第1章~第3章)系统地综述扩展有限单元法理论的研究进展和主要应用,简述扩展有限单元法理论的基础知识(水平集法和线弹性断裂力学基础) ;第2部分(第4章)详细地论述扩展有限单元法的基本理论;第3部分(第5章~第8 章)详细介绍扩展有限单元法在教聚裂纹扩展、非均质问题、动态断裂问题和剪切带演化领域中的应用;第4部分(第9章)介绍扩展有限单元法的程序设计,给出主要的程序代码,将有利于读者尽快掌握扩展有限单元法的程序实现,并在此基础上应用该方法解决工程实际问题。
【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematica在线性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书深入讨论Krylov子空间算法的核心思想和理论,结合算法的推导过程,介绍Krylov子空间算法和预处理技术的**进展,同时介绍Krylov子空间算法及预处理技术在电磁计算和数字图像处理中的应用.
无
本套丛书是在《计算方法丛书》基础上重新整理和编辑加工而成的典藏版,包含《计算方法丛书》的1-29卷。本套丛书稿件在原电子稿基础上统一调整为32开本,封面统一设计,但正文内容(包括格式)未做任何调整。本套丛书将统一定价,统一包装,每本书不单独定价和包装。
本书阐述自适应Fourier分解(AdaptiveFourierDecomposition,AFD)及单分量函数论的数学理论及应用。按照理论发展的顺序,第3章单分量函数论应该在第2章AFD理论之先的,后者作为单分量函数分解的特殊情况。尽管如此,我们选择优先讲述AFD的理论。第3章通过单复变量几何分析的研究建立了单分量函数的理论。第4章讲述单分量函数论对数字信号处理的奠基性的应用,其中包括由AFD引出的Dirac型时间-频率分布的理论,以及对经典Heisenberg型测不准原理的改进。在第5章中,应用调和分析及单复变量分析方法,我们发展了前移及后移不变子空间的理论,并将该研究用于频带保持、相位重构、以及Bedrosian方程式的解。AFD与单分量函数的思想贯穿一维单复变结构下的两个典型流型,即圆与直线(第2章);高维两种复结构(Clifford代数及多复变量)之下的Euclid空间、实球壳以及多环面
无
王自强、曹俊英编写的《统计计算及其程序实现》以统计理论、数值分析、*优化理论与算法为基础,以MATLAB软件及R软件为平台,并把统计理论、数值分析、*优化理论与算法和计算机实现有机地结合起来,让读者理解和掌握统计方法解决实际问题的全过程。本书的主要内容有:基本的数值计算方法、* 优化算法、统计计算数值方法和多元统计方法,其中包括线性方程组的数值解法、非线性方程的数值解法、数值积分、线性规划问题的数值计算、非线性优化的数值计算、多元相关与回归分析、方差分析、线性与非线性模型及应用多元分析。 本书可以作为理工、经济、管理、统计等专业的高年级本科生和研究生的数理统计、*优化方法和数值分析的辅导教材或教学参考书,也可以作为统计计算课程的教材。
本书是系统地介绍各类多维奇异积分的高精度算法的专著.全书共5章:第1章介绍面型与点型奇异积分(包括弱奇异、Cauchy强奇异、Hadamard超奇异积分)的概念与存在条件及一些基本性质,并介绍各类奇异积分算子的定义和基本性质;第2章简略介绍正常积分的数值方法和加速收敛方法;第3章主要论述一维各类奇异积分与含参数的奇异积分的高精度算法以及各类奇异积分的加速收敛方法,同时给出了外推的稳定性分析;第4章主要论述各类多维奇异积分与含参的奇异积分的高精度算法以及各类奇异积分的加速收敛方法;第3、4章是本书的核心内容;第5章介绍奇异积分与奇异积分算子的渐近展开式.本书取材新颖,算例翔实,所提供的算法具有计算复杂度低、精度高、并行度高和拥有后验误差估计等特点.
本书系统地介绍了数值计算的基本概念、常用算法及有关的理论分析和应用。全书共分10章。第1章是绪论,介绍数值分析中的基本概念;第2~9章包含了数值计算中的基本问题,如线性方程组的数值解法、矩阵特征值和特征向量的数值解法、非线性方程及方程组的数值解法、插值方法、数据拟合和函数逼近、数值积分、数值微分以及常微分方程初值问题的数值解法等;第10章介绍了Matlab软件,并介绍了如何将之应用于数值分析的基本问题计算。读者可将其中的算法和命令用于数值实验和工程计算实践中去。各章都给出典型例题并配有一定数量的习题,书后给出了习题答案或提示。 本书可作为理工科大学工程硕士研究生的“数值分析”课教材,还可作为大学本科及硕士生的学习参考书,同时也可供工程技术人员参考使用。
郑继明、刘勇、刘平、尹龙军编著的《计算方法学习指导》是学习“计算方法”课程的辅导书,包括误差理论,插值与曲线拟合,线性方程组的数值解法、非线性方程(组)的迭代解法,矩阵特征值和特征向量的计算,数值积分和常微分方程初值问题的数值解法等。每章分为4个部分:“基本要求与主要内容” 给出了课程基本要求,系统地归纳了计算方法的基本理论;“例题选讲”和“练习题及解答”对各类典型问题较详细地给出了解题过程;“数值实验”运用 MATLAB软件给出了实验例题的计算机实现。 《计算方法学习指导》可作为理工科本科生的简明教材或参考书,也可供硕士研究生及从事科学计算的工作者参考。
本书以数学工具软件MAPLE,MATLAB,VISUAL FORTRAN,STATIS-TICA的使用为基础,介绍科学和工程中应用数学方法的内容,包括线性代数与矩阵论基础、线性方程组和非线性方程组的数值方法、数值逼近方法(值和拟合、数值积分和数值微分)、线性规划以及无约束和有约束的*化方法等内容、应用统计方法和实验设计以及数据的处理与分析、智能化数据计算处理方法(人工神经网络的BP算法、模拟退火算法和遗传算法)、微分方程组的一些实用算法及程序(微分代数方程的解法和偏微分方程组的配置解法等)。各章都有应用数学工具软件,解决工程技术与科学研究工作中的所到的一些典型问题(特别是与化学和化工相关的问题)作为实例。 本书采用非数学专业人员易接受的方式,对线性代数、数理统计、*化方法、数值计算、方程等课程的内容进行有机地结合,阐述原理
该书综述了有限元方法的基础,包括读者在解决各自存在的工程问题以及理解该知识点更先进的应用所必须了解详细的基础理论和工作室实例。为了让读者更清晰地了解有限元的研究进展,该版本在内容上作了明显的重排,将两个新章节放在前面:弱式;变分形式;多维场问题;网格自动生成;平板弯曲和壳理论;无网格技术的进展。