本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
谢冬秀、左军编著的《数值计算方法与实验(十二五普通高等教育规划教材)》比较全面地介绍了科学与工程计算中常用的数值计算方法,具体介绍了这些计算方法的数学原理与算法及其实现,同时对这些数值计算方法的计算效果、稳定性、收敛效果、适用范围以及优劣性与特点也作了简要的分析。全书共8章,内容包括误差分析、非线性方程求根、线性方程组的直接求解和迭代求解、函数的数值逼近 (代数插值与函数的*逼近)、数值积分与数值微分、矩阵特征值与特征向量的计算、常微分方程初值问题的数值解法等。 本书概念清晰,语言通俗易懂,理论分析严谨,结构编排由浅入深.各章附有一定数量的习题,供读者练习使用,书后附有习题答案与提示。 本书可作为高等院校信息与计算科学专业、数学与应用数学专业、计算机专业、通信工程专业等理工科
本书介绍了MATLAB和LTNGO的常用编程方法。书中设计的数学实验既有趣味数学问题实验,高等数学的微积分实验。线性代数的矩阵运算和求解方程组实验。概率中的模拟实验和中心极限定理实验,也有微分方程实验和应用广泛且有实用价值的神经网络实验,还有充满趣味的数字水印实验、数独实验。所有这些实验都是简单介绍原理,然后强调应用。并有完整的程序实现,便于读者直接上机实验。本书内容广泛,但并不迫求高深理论,程序简洁易懂,让使用者容易掌握,做到学有所获。
《数值计算方法/高等学校数学类规划教材》系统地介绍了科学与工程计算中常用的数值计算方法,包括数值计算与误差分析的基础知识、非线性方程的数值求解、线性方程组的迭代解法和直接解法、插值方法、曲线拟合与函数逼近、数值积分与数值微分、常微分方程的数值解法以及矩阵特征值的数值计算等。 《数值计算方法/高等学校数学类规划教材》注重数值计算方法思想的阐述,突出实用性,强调数值算法的实现与应用,可作为高等学校理工类专业本科与硕士生计算方法或数值分析课程的教材,还可供从事科学与工程计算的科j专人员参考。
本书介绍了常用数值计算方法的构造和使用,内容包括线性代数方程、非线性方程和方程组、常微分方程和方程组的数值解法,插值法与数值逼近,数值积分,矩阵的特征值和特征向量的计算等。同时,对数值计算方法的计算效果、稳定性、收敛性、误差分析、适用范围及优缺点也作了必要的分析与介绍。 本书可作为高等院校各类工科专业研究生和数学系各专业本科生教材或参考用书,也可供从事科学与工程计算的科研工作者参考。
本书是根据*对高等院校计算方法课程的基本要求,依据理工科《计算方法教学大纲》,结合本学科的发展趋势,在积累多年教学实践的基础上编写而成的。本书介绍了现代科学与工程中常用的数值计算方法以及有关的基本概念与理论,涵盖了经典数值分析的所有内容,涉及插值与函数*逼近、数值微积分、线性方程组的直接方法和迭代法、一元非线性代数方程的数值解法、矩阵特征值与特征向量的数值解法、常微分方程初值问题数值解法等,着重阐述构造算法的基本思想与原理,既注重理论的严谨性,又注重方法的实用性。所有的数值方法均配有实验,供学生上机实习。每章均配有相当数量的习题,书末附有matlab软件应用简介,便寸:读者参考。 本书阐述严谨、脉络分明、深入浅出、循序渐进、富有启发性,适于教学使用。 本书适合作为高等院校理
本书着重推介一种有别于Brun筛法和Selberg筛法的新型优化筛法。其特点是简单易懂、便于操作、适用性广。 作为该优化筛法的应用实例,书中对至今用其他方法尚未解决的14个数化问题逐个进行了论证。同时,对每个命题都给出了具体的求解方法,运算程序及实筛数据。书末附有20万以内的素灵敏表用于数据查验。 本书可供相关专业的教学与科研工作者阅读,亦可供大学数理系高年级学生、研究生参考。
本书是《高等学校精品规划教材》之一。全书共分九章,主要内容包括:解线性方程组的直接方法,解线性方程组的迭代法,非线性方程与非线性方程组解法,矩阵特征值和特征向量的计算,插值与逼近,数值积分与微分,常微分方程数值解法,偏微分方程的差分方法等。主要介绍科学计算中常用的数值计算方法,并简明介绍各种算法的基本思想与原理。 本书可作为计算机科学与技术专业及非计算机专业硕士研究生计算方法课程教材,也可作为理工科院校非数学专业计算方法、数值分析课程的教材,还可供广大工程科技人员参考。
本书是一本全面讲述数值计算方法的教材。全书共分七章,内容包括数值方法的研究及误差分析、非线性方程的数值解、线性方程组的直接方法和迭代方法、函数逼近的插值与曲线拟合法、数值积分与数值微分、常微分方程初值问题与边值问题的数值解、矩阵特征值与特征向量的数值解等。本书将科学计算工具软件——MATLAB与数值计算方法有机地结合,给出了常用经典算法的MATLAB程序代码和算例,从而达到培养学生科学计算的能力。为使读者快速掌握MATLAB的实用技术,本书附录给出了MATLAB入门。本书概念清晰,理论分析严谨,语言叙述通俗易懂,并注重实用性,所有的算法均配有伪程序、MATLAB代码。各章末都附有一定数量的习题,以供读者学习时进行练习。 本书可作为高等院校十箅机应用专业等非数学专业理工科本科生的教材,以及工科研究生的参考教材,
本书共分九章,内容包括误差知识,方程的近似解法,线性代数方程组的解法,矩阵的特征值与特征向量的计算方法,插值法与曲线拟合,数值积分与数值微分,常微分方程初值问题的数值解法,偏微分方程的差分解法。每章末配有适量习题,书末附有习题答案。 本书可作为高等工科院校教材,也可供有关方面工程技术人员参考。
Mathematica是世界著名的数学软件。本书不仅介绍有限元分析的基本理论以及实际工程问题的应用,而且强调如何应用Mathematica实现算例的求解。对弹簧元、杆元、桁架元、梁元、平面刚架元、三角形元、四边形元和四面体元,循序渐进地介绍了其分析方法。 本书提供了大量的静力问题和动力问题的示例,具有很高的工程应用价值。本书既使用了Mathematica的交互应用,也为提高效率而编制了若干模块,而且为了输出更直观,不少问题在后处理上还用到Mathematica的图形输出功能。本书的绝大部分程序可从网站资源中下载。 本书理论阐述透彻,语言新颖、简洁、准确,可操作性强,可作为高等院校相关专业的教材或参考书,对于从事实际工作的工程技术人员也可作为重要的参考书。
《Voronoi图及其应用》在介绍Voronoi图相关概念和性质的基础上,侧重介绍Voronoi图的构造和应用方面的算法。本书主要内容包括离散点集的Voronoi图与Delaunay三角部分、多边形的Voronoi图、约束Delaunay三角部分以及重心Voronoi图的基本概念、性质、构造算法,及其在多边形剖分、几何搜索、多边形求交、可见性计算、路径规划、碰撞检测、骨架计算、文字特征提取、半色调图像生成以及信息可视化等方面的应用。 《Voronoi图及其应用》可以供从事相关研究的高校教师、科研人员参考,也可作为高等院校计算机相关专业研究生的教材和参考书。本书由杨承磊、吕琳、杨义军以及孟祥旭合著而成。
本书通过对三结点三角形平面单元的详细分析,介绍了有限元法的基本思想和基本理论(主要内容包括:弹性力学的基本方程;有限元的离散化、三结点平面单元的形函数、几何矩阵、弹性矩阵、单元刚度矩阵;总刚度矩阵的集成方法;有限元方程的形成及求解)。平面问题的矫形单元;一维杆梁单元;轴对称单元等,对任意四边形单元及等参元进行了简单的介绍。书中也讨论了诸如数值积分、解的收敛性等问题。书中附有平面三角形单元的源程序算法以便学生深入了解本课程的内容并可作为练习工具。学习本书内容需要有高等数学、材料力学、线性代数的基础而不需要更深入的知识背景。 本书用于本科机械类专业的有限元课程教材,亦作为有关工程技术人员有限元技术入门的参考书。
本书系统地介绍了数值计算的基本概念、常用算法及有关的理论分析和应用。全书共分10章。第1章是绪论,介绍数值分析中的基本概念;第2~9章包含了数值计算中的基本问题,如线性方程组的数值解法、矩阵特征值和特征向量的数值解法、非线性方程及方程组的数值解法、插值方法、数据拟合和函数逼近、数值积分、数值微分以及常微分方程初值问题的数值解法等;第10章介绍了Matlab软件,并介绍了如何将之应用于数值分析的基本问题计算。读者可将其中的算法和命令用于数值实验和工程计算实践中去。各章都给出典型例题并配有一定数量的习题,书后给出了习题答案或提示。 本书可作为理工科大学工程硕士研究生的“数值分析”课教材,还可作为大学本科及硕士生的学习参考书,同时也可供工程技术人员参考使用。
本书全面、系统地介绍了计算复杂性理论的基本内容与各种NPC问题、NP难问题等复杂问题的计算机求解方法。前四章分别简要介绍了线性规划、多面体理论、网络规划与动态规划等预备知识。第五至九章具体介绍了计算复杂性理论。包括复杂性的定义与分类,证明一个问题为P类或NPC类的基本方法,NPC记理论在分析、求解问题中的应用与近似算法的性能度量等。第十至十六章则主要以整数规划为框架,详细论述求解NPC及NP难问题各种不同形式的精确算法与近似算法。 本书可作为信息与计算科学、应用数学、计算机、管理科学等专业的研究生教材或本科生的选修课教材,也可供有关的科研人员参考。
《数值线性代数(第2版)》由徐树方、高立和张平文编著,是为高等院校数学系计算数学专业本科生编写的数值代数课程的教材。全书共分八章,内容包括:绪论,求解线性方程组的Gauss消去法、平方根法、古典迭代法和共轭梯度法,线性方程组的敏度分析和消去法的舍人误差分析,求解线性小二乘问题的正交分解法,求解矩阵特征值问题的乘幂法、反幂法、Jacobi方法、二分法、分而治之法和QR方法。本书在选材上既注重基础性和实用性,又注重反映该学科的*进展;在内容的处理上,在介绍方法的同时,尽可能地阐明方法的设计思想和理论依据,并对有关的结论尽可能地给出严格而又简洁的数学证明;在叙述表达上,力求清晰易读,便于教学与自学。每章后配置了较丰富的练习题和上机习题,其目的是为学生提供足够的练习和实践的素材,以便学生复习、巩固和
本书是全国高等学校首次出版使用的《误差理论与数据处理》教材,自1981年出版第1版以来,25年间共再版4次,本书为第5版。 第5版教材在保持原有优秀教材特色基础上,删减和补充了部分内容,以适应更多专业的教学需要。本书第5版讲述科学实验和工程实践中常用的静态测量和动态测量的误差理论与数据处理,并重点结合几何量、机械量和相关物理量测量进行介绍,内容包括:绪论、误差的基本性质与处理、误差的合成与分配、测量不确定度、线性参数的小二乘法处理、回归分析、动态测试数据处理基本方法、动态测量误差及其评定等。各章附有习题供选用,书末附录为常用数表。 本书为高等学校仪器仪表类专业教材,也可作为机械类专业、电气电子类专业、信息类专业和其他有关专业教材,同时可供科研及生产单位的研究设计和计量测试等工程技术人员
本书是全国高等学校首次出版使用的《误差理论与数据处理》教材,自1981年出版第1版以来,25年间共再版4次,本书为第5版。 第5版教材在保持原有优秀教材特色基础上,删减和补充了部分内容,以适应更多专业的教学需要。本书第5版讲述科学实验和工程实践中常用的静态测量和动态测量的误差理论与数据处理,并重点结合几何量、机械量和相关物理量测量进行介绍,内容包括:绪论、误差的基本性质与处理、误差的合成与分配、测量不确定度、线性参数的小二乘法处理、回归分析、动态测试数据处理基本方法、动态测量误差及其评定等。各章附有习题供选用,书末附录为常用数表。 本书为高等学校仪器仪表类专业教材,也可作为机械类专业、电气电子类专业、信息类专业和其他有关专业教材,同时可供科研及生产单位的研究设计和计量测试等工程技术人员
本书叙述了与计算机科学有紧密联系并且相互之间又有联系的数理逻辑基础性内容,包括经典逻辑和非经典逻辑中的构造性逻辑和模态逻辑。本书在选材时考虑了逻辑系统的特征,并且适应计算机科学的要求。本书研究各种逻辑的背景、语言、语义、形式推演,以及可靠性和完备性等问题。本书大部分章节附有习题。