本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
有限元结构分析在大型工程计算中至今仍居重要地位。本书系统地论述了有限元方程组形成和求解的各个步骤的并行计算格式和并行程序设计技巧,着重介绍了有限元分析的并行计算、大型稀疏有限元方程组直接解法的并行处理、大型稀疏线性方程组预处理共轭梯度法的并行处理、矩阵向量积的并行计算,还概括了近年来有关研究的主要成果,是一部具有较高理论水平和实用价值的著作。
【内容简介】 本书汇集了第46届至第50届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
王自强、曹俊英编写的《统计计算及其程序实现》以统计理论、数值分析、*优化理论与算法为基础,以MATLAB软件及R软件为平台,并把统计理论、数值分析、*优化理论与算法和计算机实现有机地结合起来,让读者理解和掌握统计方法解决实际问题的全过程。本书的主要内容有:基本的数值计算方法、* 优化算法、统计计算数值方法和多元统计方法,其中包括线性方程组的数值解法、非线性方程的数值解法、数值积分、线性规划问题的数值计算、非线性优化的数值计算、多元相关与回归分析、方差分析、线性与非线性模型及应用多元分析。 本书可以作为理工、经济、管理、统计等专业的高年级本科生和研究生的数理统计、*优化方法和数值分析的辅导教材或教学参考书,也可以作为统计计算课程的教材。
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
本书讨论处理无约束**化问题的数值方法,主要包括Newton法。共轭梯度法、拟Newton法、Powell直接方法以及非线性小二乘法,并且阐明了其理论、应用和发展动向。
有限元方法是现代科学与工程计算领域中重要的数值方法之一,间断有限元方法则是传统(连续)有限元方法的创新形式、改进和发展。本书系统地阐述了间断有限元的基本理论、思想和方法。 本书主要针对椭圆方程、一阶双曲方程、一阶正对称双曲方程组、对流扩散方程、Stokes方程和椭圆变分不等式等偏微分方程定解问题,介绍各种形式间断有限元方法的构造、稳定性和误差分析、超收敛性质、后处理技术、后验误差估计和自适应计算。 本书可供高等院校计算数学、应用数学、计算物理和计算力学等专业的研究生、教师以及从事科学与工程计算工作的科技人员阅读和参考。
《数值计算方法(第2版)》介绍了数值计算方法.内容涉及数值计算方法的数学基础,数值计算方法在工程、科学和数学问题中的应用以及MATLAB程序,涵盖了经典数值分析的全部内容:包括非线性方程的数值解法:线性方程组的数值解法;矩阵特征值与特征向量的数值算法;插值方法;函数*逼近;数值积分;数值微分;常微分方程数值解法等.基于MATLAB是本书的特色,对书中所有的数值方法都给出了MATLAB程序,有大量翔实的应用实例可供参考,有相当数量的习题可供练习, 《数值计算方法(第2版)》可作为理工科本科生、研究生数值计算方法课程教材或参考书,也可作为科技人员使用数值计算方法和MATLAB的参考手册。
本书重点介绍有限单元法的基本理论、程序设计,以及在工程中的应用。主要内容包括:以弹性力学为基础的有限元的概念和基本理论,等参有限元的基本理论和形函数的统一构造方法,主要的高效数值算法和有限元程序设计,以及弹塑性问题、结构动力问题、温度场与温度应力问题、混凝土徐变和粘弹性问题、板壳问题、混凝土细观力学问题。部分章节还包括了作者近年来的*研究成果。本书后附有5个有限元教学程序及其使用说明,供不同专业和不同教学对象选择使用,有的程序可以直接用来解决生产实际问题。 本书可作为水利、土木类相关专业研究生和工程力学专业本科生的教材,也可供高等院校相关专业教师和工程技术人员参考。
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
本书是作者在东南大学讲授“现代数值计算方法”的讲稿的基础上形成的。本书涵盖了经典的数值方法的大部分内容,同时也包涵了近年来发展起来的一些新方法和对一些新的应用问题的处理,如MATLAB的使用,高维积分计算的统计方法等。本书侧重算法的有效实现,给出了很多算法的FORTRAN程序或者MATLAB程序,并将它们用于处理一些具体的问题。本书共分6章,分别介绍数值计算的基本原理、矩阵分析基础、有限元方法的基本原理和应用、边界积分方程及其应用、积分计算的近代方法和快速Fourier变换和小波变换。 本书适合高等院校数学系研究生和工科相关专业研究生作为教材,也可供大学教师和科研人员阅读参考。
these notes developed from a course on the numerical solution of conservation laws first taught at the university of washington in the fall of 1988 and then at eth during the following spring. the overall emphasis is on studying the mathematical tools that are essential in developing, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. a reasonable understanding of the mathematical structure of these equations and their solutions is first required, and part i of these notes deals with this theory. part ii deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. i have stressed the underlying ideas used in various classes of methods rather than presenting the most sophisticated methods in great detail. my aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding.
《线性方程组的高效迭代算法》共分六章.章是绪论,主要概述研究问题,研究动机,研究背景,研究方法以及创新点.第二章对实际问题提出H一矩阵松弛型矩阵多分裂迭代法和H一矩阵松弛型非定常矩阵多分裂多参数迭代法,分析方法的收敛性条件,比较多分裂迭代法之间的敛散速度,并用Matlab语言和MPI并行语言验证了算法的有效性.第三章进一步研究一些H一矩阵松弛型矩阵多分裂法新的收敛性结果,分别研究非线性方程组的非定常矩阵多分裂法,线性互补问题的矩阵多分裂法,松弛型矩阵多分裂SSOR法和松弛型矩阵多分裂TOR法,得到新的更弱的收敛性结果,并进行了数值试验的比较.第四章设一计求解非对称线性方程组krylov子空间的平方共扼残差(CRS)算法和适合分布式并行计算改进的平方共扼残差(ICRS)算法,并对两种方法进行了理论分析和算法比较,后数值试验表明所提方法较好的收
全国竞赛组委会数年来先后出版的获奖作品选编不仅有益于今后参赛学生开拓设计思路、提供撰写设计报告的参考,而且已成为很多高等学校信息电子类专业本科综合实验教学、课程设计乃至毕业设计的重要参考文献。全国大学生电子设计竞赛组委会编著的《2011年全国大学生电子设计竞赛获奖作品选编》仅编入了2011年全国大学生电子设计竞赛中获得全国一等奖的部分作品,共计45篇,内容涉及全部8个竞赛题目,其中A题至E题为本科组竞赛题目,F题至H题为高职高专组竞赛题目。书中每篇作品均附有“专家点评”。
本书首先阐述了网络状态认知和流量控制的必要性及常用方法,然后介绍了模糊逻辑理论和方法、自然计算模型和方法, 并将模糊综合评判理论和自然计算理论应用到网络状态认知和流量控制领域,后给出了几个将自然计算应用于网络状态认知和流量控制的典型案例。本书可作为高等学校计算机和网络通信相关专业高年级本科生、研究生的参考书,也可供相关领域工程技术人员参考。
本书是作者在多年为理工科硕士研究生讲授计算方法课程的基础上编写而成的。全书共分11章,内容包括:计算方法概论,数值计算理论基础,非线性方程求根,线性与非线性方程组的数值解法,矩阵特征值与特征向量的计算,插值与逼近,数值积分与微分,常微分方程初值问题与边值问题的数值解法。本书选编了较多不同层次的例题和习题供教师选择,并在各章引人数学软件Matlab的应用实例,以提高学生的学习兴趣和应用能力。对某些较深入的内容,本书以附录形式放在相应章节的后面,教师可以根据学时选讲或不讲,不影响整个体系。本书内容丰富,阐述简明易懂,注重理论联系实际。可作为理工科大学非计算数学专业的研究生或高年级本科生的教材(适合36-64学时),也可作为科技工作者的参考书。
本书建立了一种求解N-S方程及湍流模型的分裂有限元方法。该方法有效克服了传统有限元求解N-S方程时存在的非线性效应、不可压缩性约束和计算量大的三大困难,为解决大气运动、海洋流动、轴承润滑等湍流运动提供了关键的数值模拟技术和方法支撑。
Since the 1970s,Science press has published more than thirty volumes in its series Monographs in Computational Methods. This series was established and led by the late academician,Feng Kang,the founding director for Computing Center of the Chinese Academy of Sciences.The monograph series has provided timely information of the frontier directions and latest research results in computational mathematics.It has had great impact on young scientists and the entire research community,and has played a very important role in the development of computational mathematics in China.
本书共四章,包括解析平面几何证明题,解析平面几何中除证明题以外的其他问题,解立体几何,解解析几何,后又提供了8个附录,以丰富本书内容。
Navier-Stokes方程是流体的经典方程。在本书中,我们将从线性的Stokes问题入手,研究如何利用协调有限元方法、有限体积方法以及非协调有限元方法高效求解。然后在强**解情况和非奇异解束两个层面研究定常Navier-Stokes方程理论和高效计算方法,同时介绍求解定常Navier-Stokes方程的三种迭代方法和针对较大雷诺数问题的Euler时空迭代方法。后研究了非定常Navier-Stokes方程的有限元离散方法以及高效全离散方法。