差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、艾滋病和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从
本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
本书深入讨论Krylov子空间算法的核心思想和理论,结合算法的推导过程,介绍Krylov子空间算法和预处理技术的**进展,同时介绍Krylov子空间算法及预处理技术在电磁计算和数字图像处理中的应用.
本书对扩展有限单元法的理论、应用和程序进行了较为详尽的论述。全书共分9章,包括4部分内容。第1部分(第1章~第3章)系统地综述扩展有限单元法理论的研究进展和主要应用,简述扩展有限单元法理论的基础知识(水平集法和线弹性断裂力学基础) ;第2部分(第4章)详细地论述扩展有限单元法的基本理论;第3部分(第5章~第8 章)详细介绍扩展有限单元法在教聚裂纹扩展、非均质问题、动态断裂问题和剪切带演化领域中的应用;第4部分(第9章)介绍扩展有限单元法的程序设计,给出主要的程序代码,将有利于读者尽快掌握扩展有限单元法的程序实现,并在此基础上应用该方法解决工程实际问题。
《反问题的数值解法(典藏版)》系统介绍了数学物理反问题求解的正则化方法,主要包括适定与不适定问题的基本概念:反问题、不适定性及其与*类算子方程的联系,基于算子广义逆理论的各种推广,几种提高正则解精度和计算效率的迭代正则化方法、离散正则化方法,各种正则化算法的数值实现,带有工程、物理与经济应用背景有启发性的实例,在附录中给出了*近的国内外研究成果和示范性MALAB语言源程序。 《反问题的数值解法(典藏版)》适合于数学专业科研人员、大学教师使用,亦可供从事科学和工程领域中反问题数值计算方法研究的科研人员,高等院校的教师、研究生和高年级大学生参考。
俄罗斯历来注重数学理论的研究,并且具有鲜明的特色,在计算数学领域的研究也有许多独特之处。 由H.C.巴赫瓦洛夫、热依德科夫、柯别里科夫所著的《数值方法(第5版俄罗斯数学教材选译)》是数值方法方面的经典教材,在俄罗斯影响很大。本书视角新颖,内容翔实,阐述系统,主要内容包括:计算误差,插值与数值微分,数值积分,函数逼近,多维问题,数值代数方法,非线性方程组和*化问题的解,常微分方程、偏微分方程和积分方程的数值求解方法。 本书可供高等院校计算数学及相关专业的学生、教师和研究人员使用参考。
Many different mathematical methods and concepts are used in classical mechanics: differential equations and phase flows, smooth mappings and manifolds, Lie groups and Lie algebras, symplectic geometry and ergodic theory. Many modern mathematical theories arose from problems in mechanics and only later acquired that axiomatic-abstract form which makes them so hard to study.
本书总结了近十几年来有限元高精度算法(即超收敛和超收敛后处理)的主要研究成果,共十二章。前五章介绍超收敛和超逼近理论,包括高次矩形的插值误差的弱估计和超逼近估计、双线性元的超收敛性和外推、高次三角形元中的问题等内容;后七章介绍超收敛后处理理论,包括调和方程边值问题的概率算法、多维离散Green函数理论、三维问题的超逼近和超收敛性、后验误差估计和超收敛等内容。 本书可供计算数学、应用数学、计算物理和计算力学等专业的高年级大学生、研究生、教师与科技人员阅读,也可供研究泛函分析和函数逼近理论的学者参考。
This book grows out of the lectures the first author gave in the summer of 2002 in the Institute of Computational Mathematics of Chinese Academy of Sciences.The purpose of the lectures was to present a concise introduction to the basic ideas and mathematical tools in the construction and analysis of finite element methods for solving partial differential equations So that the students can start to do research on the theory and applications of the finite element method after the summer course.Some of the materials of the book have been taught several times by the authors in Nanjing University and Peking University.The current form of the book is based on the lecture notes which are constantly updated and expanded reflecting the newest development of the topics through the years.
本书系统地论述了约束**化中常用的计算方法和新算法,以及这些方法的计算框图和在计算机上实现的计算方案。主要内容包括:二次规划算法、直接法、系列无约束**化方法、容许方向法、简约梯度法、约束变尺度法等。本书取材着眼于方法的实用性和全面性。
无
该书系统地阐述了有限单元法的基本原理及其在工程问题中的应用,包括弹性力学平面问题和空间问题,薄板,薄壳,厚板,厚壳,弹性稳定,塑性力学,大位移,断裂,动力反应,徐变,岩土力学,混凝土与钢筋混凝土,流体力学,热传导,工程反分析,仿真计算,网格自动生成,误差估计及自适应技术。 该书内容丰富,取材新颖,概念清晰提出了不少新的计算方法,并特别重视理论联系实际,兼有科学性和实用性,可供土木,水利,机械等工程专业的设计,科研人员使用,并可供高等院校有关专业的师生学习参考
本书系统介绍ZI数据和相关ZI模型的统计推断原理、方法和应用。内容主要包括:ZI模型参数的极大似然估计、Bayes估计、基于经典方法的影响诊断、基于K-L距离的Bayes影响诊断、ZI参数和散度参数的假设检验,ZI随机效应模型参数的极大似然和Bayes估计、基于经典方法的影响诊断、基于K-L距离的Bayes影响诊断、回归系数和散度参数的假设检验、方差成分检验,ZI模型及相应的随机效应模型中与均值函数有关的协变量函数形式和联系函数形式的误判检验等。
《高精度无网格重心插值配点法:算法、程序及工程应用》论述了基于重心型插值的高精度无网格配点法的基本算法和计算程序;详细讨论了常微分方程(组)边值问题和初值问题、积分方程和积分-微分方程、二维椭圆型偏微分方程边值问题、波动方程和热传导方程的重心插值配点法计算公式和程序;论述了不规则区域上重心插值配点法的具体算法;给出了重心插值配点法在结构变形、屈曲和振动分析方面的算法和程序;通过大量算例说明重心插值配点法的有效性和计算精度。 《高精度无网格重心插值配点法:算法、程序及工程应用》可供从事数值分析领域研究的工程技术人员和高等院校计算数学、计算力学、土木工程等专业本科生、研究生参考。
《离心叶轮内流数值计算基础》根据作者多年来在叶轮机械与流体力学相关领域的积累和研究成果提炼而成。主要内容包括流体基本属性、基本方程组的推导、网格生成的代数法与微分法、网格量的计算、模型方程的分类及求解特征、差分及其稳定性分析、有限体积法的基本原理、不可压缩N-S方程的离散计算、边界条件的实施、代数方程系统的迭代法、动-静子耦合流动模型与算法,以及并行编程基础等。《离心叶轮内流数值计算基础》注重理论体系的完整、系统和实用性,将抽象的理论与具体实例相结合、数理基础与当前热点相结合,强调研究思路与解决方法的贯通,既可作为教学用书,也可供科研参考。
量子信息学是20世纪80年代以量子物理学为基础,融入计算机科学、经典信息论形成的新兴交叉学科,主要包括量子通信和量子计算两个分支。 本书是关于量子计算机研究,分上、下两册出版。上册是关于量子计算机原理和物理实现,下册是关于量子纠错和容错量子计算。 由李承祖和陈平形等编著的《量子计算机研究》为下册,内容包括经典纠错码理论、CSS量子纠错码、稳定子量子纠错码、无消相干子空问和无消相干子系统理论、容错量子计算、拓扑量子计算等。书后附录内容包括量子力学概要、量子纠错码的群论基础、群表示理论、李群和李代数。 《量子计算机研究》兼有基础性和系统性特色,既包含学科主要基础理论,又系统介绍当前该领域前沿主要研究方向和动态。全书体系清晰、逻辑严谨、分析深入、推导详尽。既可作为高等院校的研究生教材或教学参