本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
Maple是目前应用非常广泛的符号计算软件之一,它拥有非常强大的符号计算和数值计算功能。本书详细地介绍了Maple的基本功能,包括:数值计算、解方程、微积分计算、向量及矩阵计算、解常微分方程和偏微分方程等,本书深入讲解了Maple编程的基本原理。
《反问题的数值解法(典藏版)》系统介绍了数学物理反问题求解的正则化方法,主要包括适定与不适定问题的基本概念:反问题、不适定性及其与*类算子方程的联系,基于算子广义逆理论的各种推广,几种提高正则解精度和计算效率的迭代正则化方法、离散正则化方法,各种正则化算法的数值实现,带有工程、物理与经济应用背景有启发性的实例,在附录中给出了*近的国内外研究成果和示范性MALAB语言源程序。 《反问题的数值解法(典藏版)》适合于数学专业科研人员、大学教师使用,亦可供从事科学和工程领域中反问题数值计算方法研究的科研人员,高等院校的教师、研究生和高年级大学生参考。
俄罗斯历来注重数学理论的研究,并且具有鲜明的特色,在计算数学领域的研究也有许多独特之处。 由H.C.巴赫瓦洛夫、热依德科夫、柯别里科夫所著的《数值方法(第5版俄罗斯数学教材选译)》是数值方法方面的经典教材,在俄罗斯影响很大。本书视角新颖,内容翔实,阐述系统,主要内容包括:计算误差,插值与数值微分,数值积分,函数逼近,多维问题,数值代数方法,非线性方程组和*化问题的解,常微分方程、偏微分方程和积分方程的数值求解方法。 本书可供高等院校计算数学及相关专业的学生、教师和研究人员使用参考。
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
无
本书对扩展有限单元法的理论、应用和程序进行了较为详尽的论述。全书共分9章,包括4部分内容。第1部分(第1章~第3章)系统地综述扩展有限单元法理论的研究进展和主要应用,简述扩展有限单元法理论的基础知识(水平集法和线弹性断裂力学基础);第2部分(第4章)详细地论述扩展有限单元法的基本理论;第3部分(第5章~第8章)详细介绍扩展有限单元法在教聚裂纹扩展、非均质问题、动态断裂问题和剪切带演化领域中的应用;第4部分(第9章)介绍扩展有限单元法的程序设计,给出主要的程序代码,将有利于读者尽快掌握扩展有限单元法的程序实现,并在此基础上应用该方法解决工程实际问题。
曹定爱编著的《累积法理论(精)》在介绍数理统计的基本概念、参数估计理论、小二乘估计和联立方程式的数量分析等内容的有关理论知识的基础上,系统地提出累积法估计理论,即建立了一种新的估计一般线性回归模型中未知参数的参数估计方法,并推广其应用.其主要涉及:普通累积和的概念及其统计特征,普通累积法及其估计理论(包括普通累积法估计与小二乘估计、普通累积法估计法与工具变量法等知识的介绍),一元线性回归模型中普通累积法估计与小二乘估计,多元线性回归模型中普通累积法估计与小二乘估计,多级普通累积法的估计法和普通累积法估计法在联立方程组模型参数估计方面的推广等内容。 《累积法理论(精)》适用于经济分析、金融分析、保险工程、证券分析、计算数学、工程数学、统计分析等领域的高年级本科生、研究生以及高校
本书对近年来认知计算和多目标优化领域常见的理论及技术进行了较为全面的阐述和总结,并结合作者多年的研究成果,对相关理论及技术在应用领域的实践情况进行了展示和报告。全书从认知计算和多目标优化两个方面展开,主要内容包含以下几个方面:认知科学及其特点,多目标优化问题及其求解方法,高效免疫多目标SAR图像自动分割算法,基于智能计算的认知无线网络频谱分配与频谱决策方法。
该书系统地阐述了有限单元法的基本原理及其在工程问题中的应用,包括弹性力学平面问题和空间问题,薄板,薄壳,厚板,厚壳,弹性稳定,塑性力学,大位移,断裂,动力反应,徐变,岩土力学,混凝土与钢筋混凝土,流体力学,热传导,工程反分析,仿真计算,网格自动生成,误差估计及自适应技术。 该书内容丰富,取材新颖,概念清晰提出了不少新的计算方法,并特别重视理论联系实际,兼有科学性和实用性,可供土木,水利,机械等工程专业的设计,科研人员使用,并可供高等院校有关专业的师生学习参考
《*化方法应用分析》系统讲述如何使用*化科学来解决实际问题并创造*化价值。精心选取了石油、化工、机械、冶金、能源、电力电子、航空航天、运输、通信、计算、网络、农业、生物、医药、经济、管理等领域的七十多个应用实例,系统阐述了*化方法在各行各业的广泛应用。详细给出了实际优化问题,从优化模型的建立到优化模型的求解计算,一直到优化结果的分析与比较的全过程,通俗易懂,使读者近距离全面了解优化技术是如何解决实际问题的。 《*化方法应用分析》可作为高等院校自动化、控制、系统工程、工业工程、计算机、应用数学、经济、管理、化工、材料、机械、能源等相关专业的教材,也可作为有关研究人员和工程技术人员的参考书。
兰德尔 勒维克*朱华君译的《守恒律方程的数 值方法》着重介绍守恒律方程的数学理论和数值方法 。守恒律方程的数学理论部分从标量守恒律到方程组 的守恒律,从线性对流方程到非线性方程的顺序由简 到难地给出了守恒律方程的特性介绍。数值方法方面 介绍了数值方法的特性,包括收敛性,稳定性和CFL 条件等,介绍了经典的Godunov格式,近似Riemann解 算子和非线性稳定性,还介绍了高分辨格式,包括限 制器,人工粘性,TVD格式和ENO格式等内容。
《数值分析》介绍了科学与工程计算中常用的数值计算方法及相关理论。内容包括解线性方程组的直接法和迭代法、插值法、函数*逼近、数值微积分、非线性方程(组)的迭代解法、矩阵特征值和特征向量的计算、常微分与偏微分方程数值解法等。其中包含了一些在实际中有重要应用的新方法,如求解超定方程组的小二乘法、求解线性方程组的基于伽辽金原理的迭代法、奇异值分解、广义特征值问题的求解方法等。同时。对数值计算方法的计算效率、稳定性、收敛性、误差估计、适用范围及优缺点也进行了分析和介绍。 《数值分析》可作为高等院校数学系各专业本科生和各类工科专业研究生的教材或教学参考书,也可供从事科学与工程计算的科研工作者阅读参考。
本书主要讨论广义线性模型在单变量及多变量回归分析中的应用。书中通过生物学、经济学和社会学等方面多达60余个应用实例,对近年来广义线性模型新的科研成果作了系统介绍,内容新颖,实用性强。
《偏微分方程外问题--理论和数值方法(精)》分两部分部分介绍偏微分方程外问题的数学理论,其中包括定常问题和不定常问题、弱解理论和位势解理论,以及Poisson公式在此基础上,第二部分介绍一些有效的数值方法,其中包括边界元方法、人工边界条件、无限元方法、完美匹配层和谱方法。 应隆安专著的《偏微分方程外问题--理论和数值方法(精)》可作为从事偏微分方程理论研究和应用研究的科研人员和工程技术人员的参考用书,也可作为科学与工程计算领域的研究生的教材。
本书总结了近十几年来有限元高精度算法(即超收敛和超收敛后处理)的主要研究成果,共十二章。前五章介绍超收敛和超逼近理论,包括高次矩形的插值误差的弱估计和超逼近估计、双线性元的超收敛性和外推、高次三角形元中的问题等内容;后七章介绍超收敛后处理理论,包括调和方程边值问题的概率算法、多维离散Green函数理论、三维问题的超逼近和超收敛性、后验误差估计和超收敛等内容。 本书可供计算数学、应用数学、计算物理和计算力学等专业的高年级大学生、研究生、教师与科技人员阅读,也可供研究泛函分析和函数逼近理论的学者参考。
Many different mathematical methods and concepts are used in classical mechanics: differential equations and phase flows, smooth mappings and manifolds, Lie groups and Lie algebras, symplectic geometry and ergodic theory. Many modern mathematical theories arose from problems in mechanics and only later acquired that axiomatic-abstract form which makes them so hard to study.
今年是恩师郭柏灵院士70寿辰,华南理X-大学出版社决定出版《郭柏灵论文集》。郭老师的弟子,也就是我的师兄弟,推举我为文集作序。这使我深感荣幸。我于1985年考入北京应用物理与计算数学研究所,师从郭柏灵院士和周毓麟院士。研究生毕业后我留在研究所工作,继续跟随郭老师学习和研究偏微分方程理论。老师严谨的治学作风和对后学的精心培养与殷切期望,给我留下了深刻的印象,同时老师在科研上的刻苦精神也一直深深地印在我的脑海中。 郭老师1936年生于福建省龙岩市新罗区龙门镇,1953年从福建省龙岩市中学考入复旦大学数学系,毕业后留校工作。1963年,郭老师服从祖国的需要,从复旦大学调入北京应用物理与计算数学研究所,从事核武器研制中有关的数学、流体力学问题及其数值方法研究和数值计算工作。他全力以赴地做好了这项工作,为我国
本书系统地论述了约束**化中常用的计算方法和新算法,以及这些方法的计算框图和在计算机上实现的计算方案。主要内容包括:二次规划算法、直接法、系列无约束**化方法、容许方向法、简约梯度法、约束变尺度法等。本书取材着眼于方法的实用性和全面性。
差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、艾滋病和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从基本
本书论述求解偏微分方程边值问题、初边值问题的边界元方法的数学理论及数值算法,系统地介绍了把几种常见的数学物理方程的边值或初边值问题转化为边界积分方程求解的各种途径,以及离散化求解边界积分方程的数值计算方法,包括配点法、Galerkdn方法、基于边界积分方程的无网络算法等,书中简要论述了的泛函分析及微分算子基础知识,着重论证了在带权的sobolev空间中利用与边界积分方程等价的变分形式来分析边界元近似解的收敛性和估计误差的方法。 本书可作为计算数学、应用数学、计算力学等专业高年级本科生和研究生的教材,也可供大学教师、从事科学与工程计算研究的科学工作者和应用边界元方法的工程技术人员参考。
《数值分析与科学计算》系统地介绍了数值分析的有关内容,共十章.内容包括:误差:非线性方程求根;线性方程组的数值解法;解线性代数方程组的迭代法;非线性方程组数值解与*化方法;插值方法;数据拟合与函数逼近;数值积分和数值微分;常微分方程的数值解;矩阵特征值与特征向量的计算.本书的*特色是在书中增加了科学计算与matlab软件的内容,在介绍各种数值方法的同时,具体讲解了如何将算法编写成程序,以及如何用数学软件求解相关的数值问题. 《数值分析与科学计算》可作为工科研究生以及本科生“数值分析”或“计算方法”课程的教材或教学参考书,也可作为“数值分析实验”的参考书和数学建模竞赛的辅导教材,还可供科技工:作者和工程技术人员学习和参考.