本书为日本数学家、菲尔兹奖得主广中平祐的思想文集。书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、*子教育中培养创造性思维的原则与方法。本书是广中平祐先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
面积法是一种有着悠久历史的传统方法。近几十年来, 面积法体系得到进一步的发展, 焕发出新的生命力, 如今已成为平面几何中的基本方法,甚*成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具 (共边定理和共角定理) 以及指导思想 (消点法), 并辅以大量例题来说明用面积法解题的有效性。 另外, 书中还介绍了面积法与勾股定理、 托勒密定理等的关系, 以及面积法在不等式、 三角等多个数学分支中的应用。 本书以面积法为主线, 串接了许多有趣的数学内容, 适合中小学师生以及数学爱好者阅读。 我们很高兴看到读者对我们的认可。现在,我们对这本书进行了完善并重新出版,希望能对你学*几何有一点帮助 .
书名:写给全人类的数学魔法书 定价:32元 作者:永野裕之 出版社:新世界出版社 出版日期:2013-6-1 0:00:00 ISBN:9787510441912 字数: 页码:209 版次:第1版 装帧:装 开本:16 商品标识: 书名:写给全人类的数学魔法书 定价:32元 作者:永野裕之 出版社:新世界出版社 出版日期:2013-6-1 0:00:00 ISBN:9787510441912 字数: 页码:209 版次:di1版 装帧:装 开本:16 商品标识: 《写给全人类的数学魔法书》编辑推荐:全日本校长永野裕之*新力作! 全日本受欢迎的数学书! 日本yamaxun一般数学类别*!冲破惯常的数学学习法,告诉你数学到底是个什么东西,为什么 越是死记硬背公式,就越学不好数学 ;书中详尽介绍10种*基本解题思路,只要熟练掌握,就能轻松应对各种类型数学题,尤其是难度较高的高考真题;书中回答了 怎样听课 怎样
作为我国高等教育组成部分的自学考试,其职责就是在高等教育这个水平上倡导自学、鼓励自学、帮助自学、推动自学,为每一个自学者铺就成才之路。组织编写供读者学习的教材就是履行这个职责的重要环节。毫无疑问,这种教材应当适合自学,应当有利于学习者掌握和了解新知识、新信息,有利于学习者增强创新意识,培养实践能力,形成自学能力,也有利于学习者学以致用,解决实际工作中所遇到的问题。
本书着重介绍了人工神经网络、遗传算法和模糊逻辑的基本模型、理论及算法及其在工程技术中的应用,如分类器、数据挖掘、现代优化方法和模糊控制,并且给出了基于MATLAB的数值实验,本书每章后均配有习题,以供学生复习、巩固书中所学知识。
暂无内容简介。。。。。。
本书是一部短文集,文章以各自英文标题的首字母按照A到Z的顺序排列,每一篇短文都讲述了一个特定的数学主题,介绍了数学世界不可不谈的伟大定理、难题、争论和不解之谜。作者以简单清晰的笔触,带领读者跨越历史,探索算术的起源、圆的奥秘、无穷级数的难题、无理数的怪异特征等话题,讲述了数学大师们的生活轶事和神秘经历,勾勒出数学的概貌。本书荣获美国出版商协会的 数学佳作奖 ,适合所有喜爱数学知识和历史故事的读者阅读。
外经典教材辅导系列是一套全面解析当前外各大院校教科书的学习辅导资料。张成福、党秀云著的《公共管理学》是的标准公共管理学教材之一。本书遵循修订版的章目编排,共分为l5章,每章由三部分组成:部分为复习笔记,总结本章的重难点内容;第二部分是课(章)后习题详解,对修订版的所有习题都进行了详细的分析和解答;第三部分为考研真题详解,精选部分名校近年的考研真题,并提供了详细的参考答案。 圣才学习网/圣才考研网(.100exam.tom)提供张成福、党秀云《公共管理学》等外经典教材名师讲堂、各种管理类考试辅导方案(保过班、面授班、网授班等),并精心制作了面授班与网授班的全套授课光盘。购书享受大礼包增值服务 100元网授班 20元真题模考 20元圣才学习卡 。本书特别适用于各大院校学习该教材的师生以
在这本与生活常识紧密相关的数学手账中,我们将学会正确看待数学学习中的恐惧与挫折感,体会数学思维带来的快乐。作者凭借丰富的教学经验和感悟,借助引人入胜的数学知识和300多幅手绘插画,用简单的语言讲述了对称、模糊逻辑、彭罗斯图案、无穷、孪生质数猜想、博弈论、费马大定理等有趣的数学话题,借此鼓励读者学会处理数学学习中的困难与变化,找到适合自己的思考方法。无论是学生还是数学爱好者,*能在阅读本书的过程中获得学习数学的勇气与自信,唤醒自己 心中的数学家 。
这是一本精美的小书,简单易懂! 本书抛却细枝末节,以28个小故事极其简洁地介绍了微积分的发展历程,以及它在其他学科和生活中的各种应用。此外,本书还概述了微积分与最值、无穷、极限等概念的密切联系。本书的目的不是教给读者微积分的具体计算方法,而重在展示微积分这一数学重要分支的发展脉络,以加深初学者对这一主题的理解。 本书作为微积分的入门读物,适合高中生、大一学生以及数学爱好者阅读。
作为我国高等教育组成部分的自学考试,其职责就是在高等教育这个水平上倡导自学、鼓励自学、帮助自学、推动自学,为每一个自学者铺就成才之路。组织编写供读者学习的教材就是履行这个职责的重要环节。毫无疑问,这种教材应当适合自学,应当有利于学习者掌握和了解新知识、新信息,有利于学习者增强创新意识,培养实践能力,形成自学能力,也有利于学习者学以致用,解决实际工作中所遇到的问题。
数学是关于数的学问吗?数学是人类的发明还是人类的发现?为什么数学看起来那么抽象深奥?为什么说数学是万学之学? 本书以数学的产生和发展历程为主线,通过数学人物和历史事件对这些问题进行寻根溯源,讲述了一个关于数学渊源的故事,为读者描绘了一幅生动有趣、绚丽迷人的历史画卷。 在本书中,作者把数学的主要分支、理论和应用介绍给读者,其中既没有各种复杂艰深的数学公式和推理证明,也没有大量生僻的数学专业术语,条理清晰,语言通俗易懂。通过阅读本书,读者可以了解数学是怎么诞生的以及什么是数学这两个基本问题,从而以不一样的眼光看待数学这一人类智慧。 本书可供对数学感兴趣的读者阅读。
本书是哈代于1940年写成的心得之作,展现了数学之美、数学的持久性和数学的重要性三大主题。作者从自己的角度谈论了数学中的美学,给众多数学 门外汉 一个机会,洞察工作中的数学家的内心。作者还讨论了数学的本质与特点、数学的历史及其社会功能等诸多话题。该书被称为是 用优雅的语言对数学真谛进行了充分的揭示 ,原汁原味地向读者展示了一位真正、纯粹的数学家的数学思想,是数学的经典读物。
三角学是一个古老的数学分支,它美丽而又神秘。 本书从历史发展的角度展现了三角学与其他诸多学科的紧密联系,阿涅西的女巫、高斯的启示、芝诺的遗憾 一连串有趣的故事构成了一幅美丽的画卷。全书共15章,历史、理论、趣闻、应用尽含其中,涵盖了三角学的所有精华部分。品读此书,你会感叹数学之美、人类之聪慧、科学发展之不易。 本书适合所有对数学特别是三角学感兴趣的读者阅读。
作为我国高等教育组成部分的自学考试,其职责就是在高等教育这个水平上倡导自学、鼓励自学、帮助自学、推动自学,为每一个自学者铺就成才之路。组织编写供读者学习的教材就是履行这个职责的重要环节。毫无疑问,这种教材应当适合自学,应当有利于学习者掌握和了解新知识、新信息,有利于学习者增强创新意识,培养实践能力,形成自学能力,也有利于学习者学以致用,解决实际工作中所遇到的问题。
《数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为 绝赞的数学科普书 。 《数学女孩5:伽罗瓦理论》从鬼脚图讲起,结合二次方程式的求根公式、尺规作图、群和域等知识,最终带领读者进入伽罗瓦理论的世界,还原伽罗瓦短暂的一生中璀璨不朽的数学成就。整本书一气呵成,非常适合对数学感兴趣的初高中生以及成人阅读。
本书从历史的视角向我们娓娓讲述数字迷人的发展史,从数字的发明到各种运算符号,从零的出现到超越数的神奇,从十进制到现代的信息论,从第一台计算机的发明到人类计时的方式,展示了数字是如何从生活中来,又是如何影响着我们周围的方方面面的。 你可知道除号原来是一把短剑的样子?你可知道简单如1、2、3这样的数字几乎毁灭了数学?到底什么是虚数?阅读过程中,你会遇到古代的贤者,他们会告诉你何为数字,以及如何使用数字。你还会看到关于数学大师的奇奇怪怪的故事,例如对数的发明人员约翰 纳皮尔手不释鸡,斐波那契用兔子展示数列。 数字表面上看着简单,其实颠覆你的想象。本书将带你踏上全新的旅程,走进美妙的数学世界;为你打开数字的历史之门,探索漫长岁月中惊人、迷人而又恼人的数学,展示比1、2、3丰富得多的数字世界。本
这是20世纪学术史上极有影响的著作之一,是科学史与科学哲学研究者们不可不读的基本文献。它引发了一场认识论的大变革,成为科学哲学史上一道重要的分水岭。其影响不仅在于科学史、科学哲学、科学社会学等相关领域,而且延伸到社会学、文化人类学、文学史、艺术史、政治史、宗教史等人文和社会科学领域,甚至在社会公众领域也产生了深刻的影响。书中的关键概念如 范式转换 等如今已成为世界性的重要词汇。 ? ??本书自1962年面世以来就引起强烈反响,掀起了一股世界性的研究热潮,至今不衰。本版是芝加哥大学出版社为庆祝该书问世五十周年而作,新增加拿大哲学家伊恩 哈金(Ian?Hacking)教授所写的导读。青年翻译家张卜天教授精心翻译了新的中译本。
勾股定理应该是大家非常熟悉的数学定理,但你知道它在最初被发明时的作用吗?勾股定理早在古埃及时代就被用来测量土地的面积。数学中有非常多的数学定理,它们不仅是数学书中一连串用符号表示的公式,还与我们的日常生活息息相关。本书在介绍了许多比较重要的数学定理的同时,更强调了逻辑思维能力和解决问题能力的重要性。本书适合小学高年级和中学生阅读。
本书通过折纸、扑克、象棋、数独、掷骰子等20类家喻户晓的游戏阐述了数学家的思维方式,揭示了游戏中的代数、几何、统计学、逻辑学与人工智能的种种乐趣,展现了游戏思维在算法、大数据和人工智能发展过程中的独特作用。