勾股定理应该是大家非常熟悉的数学定理,但你知道它在最初被发明时的作用吗?勾股定理早在古埃及时代就被用来测量土地的面积。数学中有非常多的数学定理,它们不仅是数学书中一连串用符号表示的公式,还与我们的日常生活息息相关。本书在介绍了许多比较重要的数学定理的同时,更强调了逻辑思维能力和解决问题能力的重要性。本书适合小学高年级和中学生阅读。
本书着重介绍了人工神经网络、遗传算法和模糊逻辑的基本模型、理论及算法及其在工程技术中的应用,如分类器、数据挖掘、现代优化方法和模糊控制,并且给出了基于MATLAB的数值实验,本书每章后均配有习题,以供学生复习、巩固书中所学知识。
《考研专业硕士系列丛书:经济类联考综合能力核心笔记·数学(2013)》针对经济类联考综合的数学部分,依据经济类联考综合考试大纲,结合历年真题具体要求以及考试的资讯编写,力求地再现考试的考查内容以及对考生的能力要求,限度地帮助考生提高复习效率。
作为我国高等教育组成部分的自学考试,其职责就是在高等教育这个水平上倡导自学、鼓励自学、帮助自学、推动自学,为每一个自学者铺就成才之路。组织编写供读者学习的教材就是履行这个职责的重要环节。毫无疑问,这种教材应当适合自学,应当有利于学习者掌握和了解新知识、新信息,有利于学习者增强创新意识,培养实践能力,形成自学能力,也有利于学习者学以致用,解决实际工作中所遇到的问题。
周凯、邬学军、宋军全编著的《数学建模》以数学建模所涉及的常用数学方法(类型)为主线进行编排,内容包括:数学建模概述;数学建模方法示例;优化数学模型;图与网络数学模型;评价管理数学模型;预测分析数学模型;微分与差分方程数学模型;服务系统数学模型;统计分析数学模型;启发式算法简介。每一章讨论一种类型的模型,以应用为目的,不做过多的数学理论阐述,通过例子介绍如何使用该方法来解决实际问题。所用实例大部分来自于各种形式的数学建模竞赛,当然一篇完整的竞赛论文往往不仅仅只是一种数学方法的使用,所以在本书中一般只是给出该例子的解题思路及主要过程,它往往只是问题的部分解,一般只涉及与这一章的数学方法有关的内容。一篇的竞赛论文往往是多种数学方法以及各种工具的综合运用,它是一个团队综合能力的具体展
三角学是一个古老的数学分支,它美丽而又神秘。 本书从历史发展的角度展现了三角学与其他诸多学科的紧密联系,阿涅西的女巫、高斯的启示、芝诺的遗憾 一连串有趣的故事构成了一幅美丽的画卷。全书共15章,历史、理论、趣闻、应用尽含其中,涵盖了三角学的所有精华部分。品读此书,你会感叹数学之美、人类之聪慧、科学发展之不易。 本书适合所有对数学特别是三角学感兴趣的读者阅读。
作为我国高等教育组成部分的自学考试,其职责就是在高等教育这个水平上倡导自学、鼓励自学、帮助自学、推动自学,为每一个自学者铺就成才之路。组织编写供读者学习的教材就是履行这个职责的重要环节。毫无疑问,这种教材应当适合自学,应当有利于学习者掌握和了解新知识、新信息,有利于学习者增强创新意识,培养实践能力,形成自学能力,也有利于学习者学以致用,解决实际工作中所遇到的问题。
为了完善高等教育自学考试教育形式,促进高等教育自学考试的发展,组织编写了全国高等教育自学考试自学辅导书。 自学辅导书以全国考委公布的课程自学考试大纲为依据,以全国统编自考教材为蓝本,旨在帮助自学者达到学习目的,顺利通过国家考试。 自学辅导书是高等教育自学考试教育媒体的重要组成部分,我们将根据专业的开考情况和考生的实际需要,陆续组织编写,出版文字、音像等多种自学媒体,由此构成与大纲、教材相配套的、完善的自学媒体系统。
数学是上帝用来书写宇宙的文字 蕴含在生活中的各个角落,越靠近它,你就越能体会到它的不简单之处。本书精选了《最强大脑》节目中的热门项目,详细剖析了这些烧脑问题背后的数学知识并加以扩展。数字华容道的排列问题,立体一笔画的解链,迷宫中的拓扑知识,繁花规图案的摆线方程,数独的设计与求解 这一系列有趣的问题不仅可以加深你对数学的了解,而且还能开发智力、活跃大脑。 本书适合喜欢数学的读者阅读。
本书以数学游戏为基础,以培养孩子逻辑思维能力为目的,将数学与逻辑思维启蒙所需的知识点融入游戏之中,以孩子乐于接受的游戏形式展现,有助于培养孩子对数学与逻辑思维的兴趣。本书结合低学段儿童的认知规律,将内容设置为三个部分:第一部分,漫步让人大开眼界的神秘图形世界,讲的是数学世界中的图形之美,有助于空间想象力与创造力的养成;第二部分,运算统计小达人,玩转数学真轻松,讲的是运算与统计方面的数学知识;第三部分:手脑眼并用脑力赛,动手实操更好玩,培养孩子的动手能力。 本书重点开发3~10岁儿童的数学与逻辑思维能力,通过游戏引发孩子对数学、逻辑思维的兴趣,同时融入有助于数学启蒙的各种知识点,更容易被该年龄段的儿童接受。
本书这本经久不衰的畅销书出自一位著名数学家G 波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕 探索法 这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何 推理 性问题 从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。