本书是由数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》中的一本。 本书是作者在莫斯科大学力学-数学系讲授多遍数学分析的基础上写成的。全书共二卷,自1981年版出版以来,至今已经修订为第4版。在内容方面,作者力图使与其平行的以及后继的分析、代数和几何方面的现代数学课程之间联系更加紧密,把重点移到一般数学中最有本质意义的那些概念和方法上,并改进语言的叙述,使之与现代数学科学文献的语言适当接近;另一方面,在保持数学一般理论叙述严谨性的同时,对反映其自然科学源泉和应用的要求也有充分体现。 俄罗斯科学院院士、世界著名数学家В.И.阿诺尔德这样评价本书:В.А.卓里奇的教科书是现有供大学数学系、物理系学生用的分析教科书中最成功的。它与传统分析教科书的重要区别在于,它一方面更贴近自然科学 (特
本书是根据全国工科院校硕士研究生“数理统计”课程的基本要求,在保留第二版的大部分内容和优点的基础上,适当补充和修改而成。全书共分8章,内容包括:统计量与抽样分布、参数估计、统计决策与贝叶斯估计、假设检验、方差分析与试验设计、回归分析、多元分析初步、统计软件SPSS简介。与第二版相比较,加强了数理统计的经典内容和统计软件及应用的介绍,旨在提高工科研究生的统计理论水平和应用能力。书中各章配有适量的习题,书后附有习题答案。 本书可作为工科各专业研究生,数学与应用数学、信息与计算科学、统计学专业本科生的教材,也可供广大工程技术人员参考使用。
会计硕士(MPAcc)专业学位是国际通用的专业学位,其英文全称是Master of Profes-sional Accounting,英文缩写为MPAcc。会计硕士(MPAcc)专业学位与会计学学术性硕士学位是规格不同的两种学位类型,各有侧重。前者更注重学术性与职业性的紧密结合,在招生办法、教育内容、培养模式、质量标准等方面都更突出职业要求。会计硕士(MPAcc)的目标是面向会计职业,培养德智体全面发展,具备良好的职业道德和法纪观念,系统掌握现代会计学、审计学、财务管理以及相关领域的知识和技能,熟悉国际会计准则与市场经济规律,对会计及相关实务有充分的了解,具有很强的解决实际问题能力的高层次、高素质、应用型的会计专门人才。会计硕士(MPAcc)招生考试的科目共有四门,分别是政治理论、英语、财务会计、综合知识。其中,政治理论考试由各招生单位单独组织,时间
MPA联考专业课考试内容,公共管理基础知识,含行政学和管理学的基本内容。 1-11章,主要包括管理学的基本概念、流派、学派代表人物,管理学各理论简介,公共管理的基本知识等等。 各章均有详细的讲解。 本考试指南是MPA联考命题的依据
本书内容包括绪论、集合和映射、代数、数系、几何、图形、实值函数、不等式、概率统计等,用现代数学的观点沟通高等数学与中学数学的联系,可供高师院校、师专、教育学院数学专业作选修课使用。
数学是思维、生活、信息社会须臾不可离的学科,但是,错综复杂的算式又让人望而生畏。本书带领读者在数学的历史、集合与逻辑、代数学、分析学、几何学、概率论与统计学。以及现代数学等数学世界的各领域中漫步,让读者在每个领域游览一番之后,又转回去用其所得去琢磨与历史、生活、电脑等相关的数学问题。让数学的乐趣在阅读中自然体现。为了使本书能给读者带来更多关于数学的乐趣,特别在书中添加了休息室、图形数学、数学游戏、数学试验等妙趣横生的小板块。愿读者们踏着这条便捷的小路,步入威严而有趣的数学殿堂。
数学建模,通俗的说是通过对实际问题的分析、抽象和简化,明确实际问题中最主要的变量和参数,通过变量内在的一些规律建立它。们之间的关系,再用恰当的方法求解,然后把计算结果翻译成普通人能看懂的语言,最终接受实践的检验并指导实践。 大学数学课不仅要求学生学习数学的知识和方法,更重要的是使学生学会如何利用所学的数学知识去解决实际问题,这就是数学建模这门课的主要目的。 通过该课程的学习,不仅能使学生系统地掌握数学建模的基本知识、基本理论和基本方法,更重要的是培养和训练学生的数学建模素质,使学生具有熟练的计算推导能力、逻辑推理能力及综合运用所学知识分析和解决实际问题的能力,同时也为学生适应现代社会的需要奠定良好的基础。 鉴于数学建模的重要性,在大学开展数学建模的普及教育已势在必行
《线性代数》共包括六章,分别为行列式、矩阵、向量与线性方程组、矩阵的特征值与特征向量、二次型和用Mathematica软件解线性代数问题。每章都配备有相应的习题,书后提供了各章习题的参考答案及提示。 《线性代数》可以作为高等院校公共基础课“线性代数”课程的教材,也可以作为工程技术人员学习线性代数知识的参考书。
《管理类、经济类联考 老吕逻辑冲刺600题》由管理类联考资深名师吕建刚老师倾力打造。全书共包含20套模拟试卷,600道密押试题,用于考研冲刺阶段自我演练、查漏补缺、冲刺高分。每套模考卷的题型和考点都延续了历年真题的风格,具有典型性。而且解析详尽,剖析透彻。另外,每道题的解析都设有所属母题,有利于学生查找同类题型,进行扩展训练,举一反三,巩固提高。