本书从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等.新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范
李继根等编的《矩阵分析与计算》是基于编著者多年从事矩阵分析类课程的教学改革实践经验,并结合学生的实际情况编写而成的,可作为高等院校理工科各专业研究生和工程硕士学习矩阵分析等相关课程的教材,也非常适合理工科高年级本科生学完线性代数课程后进一步学习之用。全书分为线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题七章。该教材既注意系统性,又注重体现工科特色,深广度适中,并适当略去了一些定理的证明。书中注重启发式教学,采用多种方式自然地引入基本概念和基本方法。同时,行文时非常注重几何直观及与类比,力争做到深入浅出、简洁易懂,以便于自学。书中还穿插了许多矩阵计算知识,并附有大量matlab代码,以渗透科学计算思维。此外,书中加入的大量数学史
吴悦辰编著的《三线坐标与三角形特征点》主要包括十章:三线坐标和重心坐标,三角形的特征点(一)——一些经典的几何特征点,三角形的特征点(二)——一些与透视相关的几何特征点,三角形的特征点(三)——共轭与变换,三角形的特征点(四)一一其他几何特征点,形形色色的直线,形形色色的三角形,形形色色的圆,三角形的二次曲线,三角形的三次曲线。本书适合数学爱好者参考阅读。
本书共分四章及附录:章整数平方和——能表示吗?第二章再谈整数平方和——有多少种表示法?第三章-1是平方和吗?第四章多项式平方和。《平方和》适合于高等院校师生及相关专业研究人员、数学奥林匹克竞赛选手和教练员以及数学爱好者。
全书共分三部分:部分皇冠上的明珠——哥德巴赫猜想简介与综述;第二部分中国解析数论群英谱;第三部分数论英雄——陈景润。 本书叙述了哥德巴赫猜想从产生到陈景润解决“1 2”问题的历史进程,突出记叙了陈景润在当时恶劣的生活环境中解决数学难题的勇气、智慧和毅力,他所取得的成绩,他所赢得的殊荣,为千千万万的知识分子树起了一面不凋的旗帜,召唤着青少年奋发向前。