“数学分析”是数学专业的基础课,本书是根据安徽省师范院校数学专业学生的基础情况、教学背景等因素量身打造的数学专业课教材之一.教材内容是由讲授此课程多年的老师经过多次讨论商定的,其中包括一元微积分学、多元微积分学、级数理论等基础内容,分上、下两册.本书适合师范院校数学专业本科生使用,也可供各高校数学系教师参考.
《俄罗斯数学精品译丛:数学分析》供初学数学分析用,它包括中学所讲授的数学分析各章节的全部内容。书中讲述多项式的导数、三角函数的导数、指数函数和对数函数的导数,积分定义为微分的逆运算、图形的面积及有穷和的极限。书后附有各章的练习。《俄罗斯数学精品译丛:数学分析》并不着意于讲述的严格性,而是注意给学生以计算技巧的训练。
张恭庆、郭懋正编著的《泛函分析讲义(下)》是一部泛函分析教材,它系统地介绍线性算子理论的基础知识,算子半群以及连续函数空间上的Wiener测度和Hilbert空间上的Gauss测度。全书共分四章:Ba
本书是为综合性大学与师范类院校的数学类专业编写的数学分析教材,全书共分上、下两册。上册的内容为一元微积分学与多元微分学,下册的内容为多元积分学、无穷级数、广义积分及傅氏级数等。作者根据多年的教学实践经验,对数学分析的内容体系作了精心的构架与调整,分散了难点,突出了分析学的基础知识与基本训练,使全书内容深入浅出、平实自然、有用有趣。
《俄罗斯数学精品译丛:数学分析》供初学数学分析用,它包括中学所讲授的数学分析各章节的全部内容。书中讲述多项式的导数、三角函数的导数、指数函数和对数函数的导数,积分定义为微分的逆运算、图形的面积及有穷和
本书内容概括了《数学分析》的全部命题,但该书习题数量多,许多题目在题型和解题方法上具有相似之处,同时该书难题多,许多题目的难度超出对同学们的要求。为了帮助广大同学更好地掌握《数学分析》的基本概念,综合运用各种解题技巧和方法,提高分析问题和解决问题的能力,我们从吉米多维奇的《数学分析习题集》中选择了一部分习题进行汇编。这些习题涉及内容广、题型多,基础性题目从多个角度帮助广大同学理解相应的基本概念和基本理论,帮助同学掌握基本解题方法;而那些层次性较高的题目,涉及的内容多,技巧性强,掌握这些题目的解题方法,可以使广大同学举一反三,触类旁通,开拓解题思路,更好地掌握《数学分析》的基本内容和解题方法。
杨有龙编著的《泛函分析引论(高等学校十三五规划重点立项教材)》主要内容可分为三部分:第一部分为空间理论的建立,包含第一章“度量空间”和第二章“线性赋范空间与内积空间”;第二部分为两个空间之间线性映
本书是与刘玉琏等编写的《数学分析讲义》(下册,第四版,高等教育出版社2003年出版)配套的学习辅导书。此次修汀埘原书版的编写框架没有改变,每个大节还是按照讲义体例,逐节对应编写。每节包括基本内容、学习要求、答疑辅导、补充例题和练习题解法提要五部分,每章末附有自我检测题,书末给出其解答。《数学分析讲义学习辅导书(第2版)(下册)》可作数学专业学生、中学教师、自学读者、函授学员学习数学分析的辅导书,也可作为数学分析习题课教学参考书和考研的参考书。
本书系统地总结了《数学分析》的基本知识、基本理论、基本方法和解题技巧,收集了大量的具有代表性的题目(其中大部分题目是来自于近几年一些高校的研究生入学试题),由浅入深地介绍了《数学分析》的解题思路和解题方法,在解题过程中启发读者进而打开思路并掌握技巧,使学生能够更好地融汇知识、理解概念和掌握方法,以提高学生分析问题和解决问题的能力。 本书包括:极限与连续、一元函数微分学、一元函数积分学、级数等8章内容。
陈天权编著的《数学分析讲义(第3册)》是作者在清华大学数学科学系(1987~2003)及北京大学数学科学学院(2003~2009)给本科生讲授数学分析课的讲稿的基础上编成的。一方面,作者力求以近代数学