今天不等式在数学领域发挥着显著的作用,而且已经形成了一个非常活跃、引人注目的研究领域。与之前的研究不等式的书相比,该书讲述了许多新的内容,即使在对最经典的不等式的讲述中,也添加了许多新研究。作者力求限度的详尽,而且给出了尽可能多的相关参考资料。目次:引言;普通不等式;特殊不等式;人名索引;主题索引。
陈国旺编著的《索伯列夫空间导论》主要讲述索伯列夫空间一般理论和在非线性偏微分方程中的应用。内容涉及Lebesgue空间Lp(Ω)及其基本性质;整数阶索伯列夫空间Wm,p(Ω)及其性质;Wm,p(Ω)空间的嵌入定理、紧嵌入定理和插值定理以及连续函数空间的嵌入定理。论述研究非线性发展方程时,常用到的含有时间的空间和含有时间的索伯列夫空间。介绍类似于索伯列夫空间嵌人定理的离散函数的插值公式,并利用离散函数的插值公式证明广义Schrodinger型方程组初边值问题整体广义解的存在性。讲述速降函数、缓增广义函数以及它们的Fourier变换和Lebesgue空间的Fourier变换,分数阶索伯列夫空间Hs(RN)和Hs(Ω)及其性质。介绍近年来外关注的几个非线性发展方程的初边值问题和Cauchy问题解的存在性以及解的爆破现象和解的渐近性质,使读者较快地利用索伯列夫空间这个有力理论工
本书是为适应双语教学的特点,专为理工科大学工科专业本科生以及工科研究生普遍开设的“数值分析”或“计算方法”课程编写的双语教材。主要内容有:线性方程组与非线性方程的数值解法;数值逼近(包括插值与样条、平方逼近、数值微积分等);常微分方程的数值解法等。每章都有相当数量的例题和习题,并附有习题答案;书末还配有计算实习题,供学生上机实习选用。 全书用英文编写,阐述严谨、脉络分明、深入浅出,介绍方法与阐明原理并重,传授知识与培养能力兼顾,便于教学和自学。本书也可以供从事科学计算的科技工作者参考。