几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神.本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“ ”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值.本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
杰洛涅编著的《世界解析几何经典著作钩沉(平面解析几何卷)》共分为三编,分别为:编平面上的直线;第二编椭圆、双曲线、抛物线;第三编二阶曲线的一般理论。 本书适合大学生、中学生及平面解析几何爱好者阅读。
本书概要地讲述了《张量分析及在力学中的应用》的各章内容之精华,并给出了该书的全部习题全解。全书共分9章,、2章介绍张量的基础知识,第3~6章介绍张量代数、张量分析和黎曼空间的曲率,第7、8章介绍张量分析在弹性力学和损伤力学中的应用,第9章介绍Matlab/Mathematica在矩阵和张量演算中的应用。本书可作为大学数学、物理、力学、天文、航空、航天、土木、水利、交通、信息和管理学科的研究生和高年级大学生的参考教材,也可供相关专业的研究人员、工程技术人员和青年教师自学参考。
本书对所谓无限维化理论的基本内容提供一个系统的处理,全书共8章,头两章概括了阅读本书主要内容所需的预备知识,其中包括基本的泛函分析结果与非光滑分析,随后各章阐述化理论的基本论题:不等式系统与择理,一阶与高阶性条件,对偶理论,向量化等,本书一方面以紧凑的形式概括了化理论的标准内容,同时介绍了较多的新近研究成果,其中包括作者本人的一些结果,这部分内容涉及近年来引起广泛关注的一些研究领域,因而可能为有研究兴趣的读者架设起从基础理论通向研究前沿的桥梁,对于数学系的高年级及有关理工科专业的硕士生,本书略加删节之后可作为使用,在当代科学发展进程中,对于化理论的日益广泛与紧迫的需要,已成为一种引人注目的潮流;有这种需要的科技工作者,将发现本书可提供一些有用的理论工具。
谢彦麟编著的《皮亚诺曲线和豪斯道夫分球定理——从无限集谈起》为皮亚诺曲线和豪斯道夫分球定理,综述了无限集区别于有限集的种种怪事。主要综述了无限集之势及其运算;有序集之序型及其运算;康托集之奇特性质;更怪的是皮亚诺曲线;最怪的是两个“分球奇论”。《皮亚诺曲线和豪斯道夫分球定理——从无限集谈起》适合大、中学生和数学教师以及数学爱好者阅读参考。
罗巴切夫斯基、库图佐夫编著的《罗巴切夫斯基几何学及几何基础概要》讲述罗巴切夫斯基几何学及几何基础概要,共为八章,章与欧几里得公设等价的一些命题第二章关于罗巴切夫斯基几何的一些事实第三章在罗巴切夫斯基平面上的相互位置,第四章罗巴切夫斯基几何的面积论,第五章欧几里得《几何原本》概观第六章基本对象,基本对象间的基本关系及几何公理,第七章几何体系的解释观念,第八章公理的协和型和独立性,同构。《罗巴切夫斯基几何学及几何基础概要》适合大、中学师生及数学爱好者的使用和收藏。
从辩证唯物主义的立场出发,对空间、时间、连续、无穷、自然数、有理数、无理数、实数、虚数、复数、集合、向量、矩阵等基础数学概念进行了深入分析,揭露和批判了数学中的唯心主义和形而上学,创立了马克思主义的数学理论体系一一数学唯物主义。《数学辩证法》可作为高等学校本科各专业数学哲学、数学史、马克思主义哲学等课程的参考资料,也适合具有专科以上学历的工程技术人员、教师、社会科学工作者阅读。
本书先讲定理的构成及推证方法.如命题的条件与结论,直接证法与间接证法,综合证法与分析证法,演绎法,归纳法,数学归纳法等,使读者对证题方法有一个较全面的了解.然后列出几何证明题463个,其中大约2/3为平面几何题,1/2为立体几何题.每题均有解答,但解答并不附在各题之后,而放在书的后半部.这样可令读者先独立解答,然后再与书上的解答对照,而不削弱读者的创造性. 本书适合初、高中师生,师范类院校及教育学院师生使用.
这本书主要介绍关于外微分形式,微分几何,代数微分拓扑,李群,向量丛,等方面的部分内容,这些内容也是理解经典现代物理和工程的基本前提。本书也呈现了几何概念及其在工程方面的应用。本书也可用于自学。读者对象:物理,工程和数学专业的研究生。
拓扑学是数学的重要分支,内容丰富且研究途径众多,不少初学者视其为畏途。本书以点集拓扑学为基础,通过对一般拓扑学、拓扑动力系统、代数拓扑学、微分拓扑学中的一些专题论述,向读者简要介绍拓扑学中的一些基本知识、研究思想以及解决问题的方法,以较少的篇幅展现拓扑学中的一些精彩画卷。本书主要内容包括:集合与序集、拓扑空间、几类重要的拓扑性质、紧空间与度量空间、离散拓扑动力系统、基本群及其应用、流形的嵌入。本书可以作为数学类专业拓扑学课程的或教学参考书。
《平面解析几何方法与研究(卷)》一书全面系统地介绍了欧氏平面解析几何的有关重要内容,是作者参考了多种有关论著并结合自己的教学经验整理而成的。《平面解析几何方法与研究(卷)》对进一步理解平面解析几何基本内容、拓宽知识面都有很大帮助,对于书中的难点和一般解析几何书中不常见到的内容作者都作了严谨而详细地论述,并配备了较多例题。每个例题都具有典型意义,是对正文的重要补充;这些例题对理解重要概念、掌握解析几何方法有重要作用。因此,《平面解析几何方法与研究(卷)》是一本有价值的数学教学参考书。
《复杂曲面数字化制造的几何学理论和方法》系统地总结了作者丁汉,朱利民在复杂曲面数字化制造基础理论方面的研究成果。全书共7章,~4章为几何学基础,沿着曲线、曲面论→曲面上的几何学→高维微分几何→Lie群、Lie代数的线路循序渐进地介绍了现代微分几何和运动学的基础理论、内在联系及统一分析方法,并结合应用穿插介绍了一些外的成果。第5~7章以微分几何和化为工具,介绍了作者提出的曲面测量、加工和夹持定位的新原理和新方法,具体内容包括:点一曲面法向误差函数的可微性条件及其二阶导数的解析计算方法,散乱点云曲面逼近的统一方法体系,回转刀具扫掠包络面的解析表达、局部重建与整体形状控制原理,自由曲面线接触和高阶点接触数控加工刀位规划理论和方法,刀具全局可达方向锥的GPU计算方法,夹持完全约束性判别和夹具定位误差
本书介绍数理逻辑的基础部分。绪论除介绍逻辑初步概念外还讲述了有关集合论和递归论的初步知识。正文前四章的内容属一阶逻辑,其中前两章是以非形式化的方式介绍命题逻辑和谓词逻辑,后两章分别给出了一个经典命题逻辑演算P和一个经典谓词逻辑演算Q,讨论了它们的元性质,还给出了一个与Q等价的形式QS。一章介绍了有关一阶理论的知识,主要是模型论的基础内容及不可判定问题。各章节后一般都有适量的习题。本书适合作为高等院校文科、理工科所开设的与现代逻辑相关课程的教材或参考书。
本书译自有名化学家GeorgeW.Gokel主编的《有机化学手册》第二版。全书共11部分,内容覆盖有机化学的各个研究领域。主要内容包括有机化合物的命名原则,纯物质的物理性质,原子、自由基及键的性质,物理常数,热力学常数,化学平衡常数,光谱学数据,物理化学关系,实验操作和分析中的常用数据,聚合物、橡胶、脂肪、油和蜡等物理常数及结构。本书取材新颖,数据翔实,内容丰富,是有机化学、无机化学、生物有机化学、金属有机化学、高分子化学及材料化学等领域的研究人员不可缺少的一本工具书。
模型式理论是现代数学的一个重要分支,它在函数论、李群表示论、数论、几休、通讯等分支中都有广泛的应用。模型式可分为解析的与非解析的两大类,解析模形起源于20世纪20年代,目前已臻完善,非解析模型式则是较晚发展起来的,它在现代物理学中有重重要的应用,这两类模型式在许多方面有类似之处但非解析的情形有其特殊的困难之处。本书从上半平面上的非解析模形式着手,对迹公式的理论与方法进行了系统地介绍,特别是对模形式的外研究概貌及研究成果,其中包括作者大量的研究成果给予了详实的讲述。全书共分七章,内容包括:Maass波动形式、Selberg迹公式、GL(2)群上的迹公式、Kuzsov迹公式、相对迹公式(几何部分)、相对迹公式(谱分解部分)等,并在附录中介绍了p进行数域。为了尽可能从相对初等的角度来引导读者进入这个领域,从而对数
《光滑流形导论》是一部介绍光滑流形的入门教材(全英文版)。是针对已经对一般拓扑、基本群、覆盖空间以及基本的线性代数与实分析有较好掌握的本科生和研究生。旨在让学生和相关的工作人员熟练地掌握和运用流形这个重要的数学工具。《光滑流形导论》主要介绍了光滑结构,切向量和余向量,向量丛,李导数,浸入和嵌入式子流形,李群和李代数。在讲述上运用图形以及直观的讨论使得内容尽可能的清晰易懂,更重要的是讲述如何用几何的方法思考抽象概念;同时,现代数学方法提供的有力工具得到了充分展示。《光滑流形导论》还提供了一些很重要的流形能够提供的几何结构的例子。
《知识建构研究从主义到实证》是作者的另一著作《问题解决与知识建构》的姊妹篇。全书分为块,共有九章:其中章至第五章主要在理论层面对建构主义和数学知识建构问题作了深入探讨;第六至第八章介绍了一些实证研究成果,包括对数学知识的微观建构研究、数学现实性问题解决研究、建构主义教学定量评估研究等;一章结合实践分析了教师如何实现建构主义教育的转向。