本书共分四章重积分、曲线积分、反常积分及依赖于参变量的积分,向量分析及场论,微分几何基础,傅里叶级数,理论部分叙述扼要,应用部分叙述详尽。
《铁路线路设计(第2版)》提出并贯彻了由面到带、由带到线、由线到段、由段到点的线路设计理念并依此组织教材编写。重点介绍铁路选线、铁路定线、铁路线形、铁路车站,简要介绍改建及扩建措施,包括磁浮铁路、直线电机地铁、直线电机独轨等新型轨道交通及其线路设计特点。
数学公式定理手册(概率统计)基础知识重点难点点拨规律技巧方法完全依照课程教学要求进行编写,汇集经典版本的精华,囊括了《概率统计》中所有概念、公式、定理、解题方法以及在使用时要注意的问题,并精选典型例题帮助理解和记忆。灵活运用图表、网络图等形式使知识更加条理化、清晰化。名师点拨重点难点,举重若轻,化难为易。规律方法科学实用,能让读者举一反三,触类旁通。
本书共24讲,主要包括数列与函数极限,函数的连续与间断,导数与微分的概念及法则,微分中值定理与洛必达法则,函数单调性与极值问题,不定积分,定积分的概念、理论与计算,定积分的几何应用与物理应用,向量及其运算,曲面与曲线,多元函数微分学,二重积分和三重积分,曲线与曲面积分,无穷级数,微分方程。 本书的主要特点是与教材同步,内容分级,以满足不同层次和不同类型读者的需要。本书各讲结构相同,包括内容提要、重点难点、典型方法与例题、习题四部分。 本书作为教学参考书,供高等学校师生参考,也可作为考研的辅导教材。
自上世纪20~30年其出现开始,群的上同调就成为了代数与拓扑学的交叉领域,并且促成了重要的新数学研究领域的创建,诸如同调代数和代数K-理论。该书是本综合论述有限群的上同调的书。书中介绍了最重要也是最有用的代数和拓扑方法,研究了有限群的上同调与同伦论、表示论和群作用之间的关系。书中的各理论与实例的结合,连同各种重要的经典群(对称群、交错群、李型极限群以及各种散在单群)的上同调的计算方法
本书是一本参赛的指导书,同时也是一本学习微积分的复习书。我们对微积分的内容进行整理归纳出知识要点,并通过典型例题的解法分析加以综合,使读者对微积分的每个知识点得以融会贯通。当前,我国从小学到高中都是围绕着升学的指标指挥棒转,学习为应试,其结果是:会套模式解题,不会尝试分析解决问题,长期的教育熏陶,使人形成了思维惯性。我们希望通过数学竞赛,通过本书的学习,能慢慢改变你的思维方式。数学需要运算能力、空间想象能力和抽象思维能力等,做习题对学好数学是重要的,在做运算难度大、步骤长及需要技巧的数学题的过程中有时最能获得数学知识,最能培养分析问题、解决问题的能力。看书和动手解题相结合必能使你学会如何去理解数学知识、如何去分析推理,从而对背景和题型稍新的数学问题不再束手无策,最终培养自己
数理逻辑是计算机科学的基础之一,在模型与系统的规约与验证等方面有着广泛的应用。随着当今软硬件产品日趋复杂,数理逻辑已经成为越来越多设计开发人员的日常工具。 本书适合作为高等院校计算机及相关专业的数理逻辑/形式化方法课程,涵盖了命题逻辑,谓词逻辑、模态逻辑与 Agent、二元决策图、模型检查和程序验证等内容。与传统数理逻辑教科书相比,它的主要特色就是紧紧围绕软硬件规约和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法,紧致性理论和Lowenhenm-Skolem定理,并介绍了Alloy语言和Nusmv工具。 本书自出版以来受到广泛好评,已经被包括美国普林斯顿、卡内基-梅隆、英国、德国汉堡、加拿大多伦多、荷兰 Vrije,印度理工学院在