本书叙述算子代数的基本理论。关于von Neumann代数(ω*-代数)介绍了基本概念、拓扑方面的分析、分类理论、因子理论、Tomita-Takesahi理论、von Neumann代数的 Borel空间以及约化理论等。关于c”-代数介绍了基本概念、GNS构造、*表示理论、公理的理论、张量积理论以及(AF)代数等。 本书可供数学专业的研究生、大学教师以及研究工作者阅读和参考。
《高等院校理工科教材:有限元法基础(第2版)》分为十章,章简要介绍有限元法的概念、发展和基本思想及特点;第二章从弹簧系统人手介绍桁架系统有限元求解方法,引入直接刚度法的概念;第三章采用直接刚度法和虚功原理两种方法推导了刚架系统的有限元计算格式,引人位移插值函数的概念;第四章在简要介绍弹性力学一般知识的基础上,运用第三章引入的虚功原理和推导过程推导了连续体平面力学问题的有限元列式,着重介绍了三角形单元和矩形单元;第五章讨论了轴对称问题的特殊性和轴对称问题的有限元求解方法;第六章介绍应用最为广泛的等参数单元,并引入数值积分的概念;第七章通过热传导问题引入变分法的基本概念并采用变分原理推导温度场问题有限元计算格式;第八章通过流体流动问题介绍加权余量法及采用加权余量法推导流场问题有限