证明是数学思想中*重要,也是*开拓性的特征之一。没有证明,*无法谈论真正的数学。本书讲述了证明的演变及其在数学中的重要作用和启发意义。从古希腊几何学时代开始,涵盖代数、微积分、集合、数论、拓扑、逻辑等几乎全部数学分支中的证明故事。我们将看到欧几里德、康托尔、哥德尔、图灵等数学大师的精彩发现和发明。这本书不是教材,它是在讲数学的历史,更是在讲数学思想的演变。作者揭示了数学学习和研究的底层方法和逻辑,让读者看到在数学中什么定理可以被证明,如何证明?什么问题可以(或无法)被解决?为数学研究和发展打开全新的视角。
本书为日本数学家、菲尔兹奖得主广中平祐的思想文集。书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、*子教育中培养创造性思维的原则与方法。本书是广中平祐先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
面积法是一种有着悠久历史的传统方法。近几十年来, 面积法体系得到进一步的发展, 焕发出新的生命力, 如今已成为平面几何中的基本方法,甚*成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具 (共边定理和共角定理) 以及指导思想 (消点法), 并辅以大量例题来说明用面积法解题的有效性。 另外, 书中还介绍了面积法与勾股定理、 托勒密定理等的关系, 以及面积法在不等式、 三角等多个数学分支中的应用。 本书以面积法为主线, 串接了许多有趣的数学内容, 适合中小学师生以及数学爱好者阅读。 我们很高兴看到读者对我们的认可。现在,我们对这本书进行了完善并重新出版,希望能对你学*几何有一点帮助 .
本书将数学的统一性贯穿始终,将理论方法与经典例题相结合,以战略、战术及工具为主线,把解题提高到了艺术高度。首先教总结解决问题的方法论,这也是全书的核心内容,进而通过实例阐述了具体的解题战术,如抽屉原理等。并从解题者的角度分别讲述了代数学、组合数学、数论、几何和微积分。
此书是晚清中西文化交流的结晶,是日中英文化交流的合璧。书中所阐发的西方文化思想之精义,使当时人耳目为之一新;书中又包含着以儒家为主的中国文化精神。
《奇妙数学史 数字与生活》 本书从历史的视角向我们娓娓讲述数字迷人的发展史,从数字的发明到各种运算符号,从零的出现到超越数的神奇,从十进制到现代的信息论,从第一台计算机的发明到人类计时的方式,展示了数字是如何从生活中来,又是如何影响着我们周围的方方面面的。 你可知道除号原来是一把短剑的样子?你可知道简单如1、2、3这样的数字几乎毁灭了数学?到底什么是虚数?阅读过程中,你会遇到古代的贤者,他们会告诉你何为数字,以及如何使用数字。你还会看到关于数学大师的奇奇怪怪的故事,例如对数的发明人员约翰?纳皮尔手不释鸡,斐波那契用兔子展示数列。 数字表面上看着简单,其实颠覆你的想象。本书将带你踏上全新的旅程,走进美妙的数学世界;为你打开数字的历史之门,探索漫长岁月中惊人、迷人而又恼人的数学,展示
本书是初等数论入门的通俗科普读本。书中以身边的生活之事为例,由浅入深、生动形象地介绍了数的奇妙性质与规律。作者用直观、易懂的讲解,引领读者去体会数论证明的不可思议与酣畅淋漓,在惊奇与畅快之中提升对数学的理解程度。本书可作为学生了解数论、提高算术能力的辅助读物,也可作为技术人员理解计算科学的参考用书。
少女娜嘉的姐姐碧安卡在一场 计算仪式 中离奇死亡。在寻求真相的过程中,娜嘉无意间被吸入一面镜子中,并遇到了可以进行 命运数 分解的精灵族。通过素数的相关计算,娜嘉发现了一个巨大的阴谋,以及这个 数之世界 的真相 本书是以奇幻小说形式创作的初等数论科普读物。作者将初等数论中的计算原理、数的性质等知识转化为魔法、祝福、诅咒,打造出了一个由数构成万物的奇幻世界,并通过讲述数论中的相关证明,以悬疑解谜的剧情逐步呈现出数的奇妙魅力。本书可作为了解初等数论与算法的趣味读物,也可作为引导读者感受数学魅力的普及读物。
数学是关于数的学问吗?数学是人类的发明还是人类的发现?为什么数学看起来那么抽象深奥?为什么说数学是万学之学? 本书以数学的产生和发展历程为主线,通过数学人物和历史事件对这些问题进行寻根溯源,讲述了一个关于数学渊源的故事,为读者描绘了一幅生动有趣、绚丽迷人的历史画卷。 在本书中,作者把数学的主要分支、理论和应用介绍给读者,其中既没有各种复杂艰深的数学公式和推理证明,也没有大量生僻的数学专业术语,条理清晰,语言通俗易懂。通过阅读本书,读者可以了解数学是怎么诞生的以及什么是数学这两个基本问题,从而以不一样的眼光看待数学这一人类智慧。 本书可供对数学感兴趣的读者阅读。
本书为线性代数入门的科普读物,书中以“如何理解线性代数”“如何理解矩阵的基础概念与计算方法”为线索,用漫画故事生动呈现了线性代数初学者的学习历程。作者从学习者的角度出发,结合生活例子讲解了线性代数中的基础概念及实际应用意义,解答了初学者在的常见困惑。本书讲解直观、通俗,适合作为正式学习线性代数前的入门读本,也适合作为了解线性代数原理的科普读物。
本书基于麻省理工学院开设的概率论入门课程编写,内容*,例题和习题丰富,结构层 次性强,能够满足不同读者的需求。书中介绍了概率模型、离散随机变量和连续随机变量、多元随机变量以及极限理论等概率论基础知识,还介绍了矩母函数、条件概率的现代定义、独立随机变量的和、*小二乘估计等*内容。
本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
本书为微积分入门科普读物,书中以微积分的 思考方法 为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需 轻松阅读 便可以理解微积分原理的入门书。
本书是哈代于1940年写成的心得之作,展现了数学之美、数学的持久性和数学的重要性三大主题。作者从自己的角度谈论了数学中的美学,给众多数学 门外汉 一个机会,洞察工作中的数学家的内心。作者还讨论了数学的本质与特点、数学的历史及其社会功能等诸多话题。该书被称为是 用优雅的语言对数学真谛进行了充分的揭示 ,原汁原味地向读者展示了一位真正、纯粹的数学家的数学思想,是数学的经典读物。
本书为日本数学家小平邦彦晚年创作的经典微积分著作,有别于一般的微积分教科书,本书突出 严密 与 直观 的结合,重视数学中的 和谐 与 美感 ,讲解新颖别致、自成体系,论证清晰详尽、环环相扣,行文深入浅出、流畅易读,从原理、思想到方法、应用,处处体现了小平邦彦的深厚功力与广阔视野。作者着眼数学分析的深处,结合自身独到的思考与理解,从严谨的实数理论出发思谋微积分,通过巧妙引导,启发读者自主思考,提升对微积分的领悟理解程度。 本书是小平邦彦为后人留下的一份重要文化财富,不仅值得数学专业人士研读,对于需要微积分知识的其他理工科学生和专业人员也具有深刻启示。
八年前, 数学之美 系列文章原刊载于谷歌黑板报,获得上百万次点击,得到读者高度评价。读者说,读了 数学之美 ,才发现大学时学的数学知识,比如马尔可夫链、矩阵计算,甚至余弦函数原来都如此亲切,并且栩栩如生,才发现自然语言和信息处理这么有趣。 在纸本书的创作中,作者几乎把所有文章都重写了一遍,为的是把高深的数学原理讲得更加通俗易懂,让非专业读者也能领略数学的魅力。读者通过具体的例子学到的是思考问题的方式 如何化繁为简,如何用数学去解决工程问题,如何跳出固有思维不断去思考创新。 本书第一版荣获国家图书馆第八届文津图书奖。第二版增加了针对大数据和机器学习的内容。第三版增加了三章新内容,分别介绍当今非常热门的三个主题:区块链的数学基础,量子通信的原理,以及人工智能的数学极限。
本书从贝叶斯理论的基本原理讲起,逐步深入算法、机器学习、深度学习,并配合项目案例,重点介绍了基于贝叶斯理论的算法原理,及其在机器学习中的应用。 本书分为10章,涵盖了贝叶斯概率、概率估计、贝叶斯分类、随机场、参数估计、机器学习、深度学习、贝叶斯网络、动态贝叶斯网络、贝叶斯深度学习等。本书涉及的应用领域包含机器学习、图像处理、语音识别、语义分析等。本书整体由易到难,逐步深入,内容以算法原理讲解和应用解析为主,每节内容辅以案例进行综合讲解。 本书内容通俗易懂,案例贴合实际,实用性强,适合有一定算法基础的读者进阶阅读,也适合其他人作为爱好阅读。
你觉得数学很无聊吗?再想想。 这本书以趣味的方式讲述了代数学和微积分的故事,探索了数个世纪以来令人惊讶的数学发展过程。你知道布尔代数吗?它只使用了两个数字:1 和 0。在布尔运算中,1 1 总是等于 1。尽管这看起来很奇怪,但这种代数方法被用于在每个微芯片中创建纳米级的电路。此外,我们将会遇到像丢番图和牛顿这样的天才,他们成功地将数学问题转化为通用的技术手段;还会看到古埃及测绘者如何测量土地,欧几里得的《几何原本》为何至今仍未过时,计算机芯片如何处理程序,以及高斯如何在不到 1 分钟的时间里计算出 1 到 100 之间的所有数字相加的和 当时他只有10岁! 这本书旨在激发读者对数学的热情。
《数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为 绝赞的数学科普书 。 《数学女孩5:伽罗瓦理论》从鬼脚图讲起,结合二次方程式的求根公式、尺规作图、群和域等知识,最终带领读者进入伽罗瓦理论的世界,还原伽罗瓦短暂的一生中璀璨不朽的数学成就。整本书一气呵成,非常适合对数学感兴趣的初高中生以及成人阅读。
《我怎样解题/单墫解题研究丛书》是 单墫解题研究丛书 的第三本,主要内容是100多道经典竞赛题及其解题过程。本书稿有两大特色:一是每道精选题都具有极高的参考价值,不仅能提高解题能力,还能培养数学思维和逻辑能力;二是在解题过程中体现了单墫教授的解题思想和艺术,有助于教师的成长与解题教学的开展。
本书是面向各年龄层次数学爱好者、以及自认为"数学不好的人”的一本科普书。 本书的创作宗旨在于选择有趣且不太为人熟知的数学问题,从有意思的角度切入讲解问题,力求以浅显和生动的语言,将较为高深的数学知识介绍给读者,使读者不但能理解这些问题,更能获得思路继续研究和赏玩,从而获得更多乐趣。让读者摆脱数学恐惧症,建立数学思维,爱上学数学。作者也将数学家攻克此问题的过程中所遇到的困难,解决困难的思路一一整理,呈现给读者。让读者既能有读"历史”书一般的趣味,也能感受数学家的高超思维模式与某些问题的意外困难。 本书涉及的数学问题方面很广,包含数论,图论,微积分,概率论,博弈论,物理中的数学等等,按话题内容方向组织为8章,基本按从易到难排列。其中末章"历史趣味”是泛数学文化方面的话题,有