本书内容包括复变函数和积分变换两部分。复变函数部分内容有:复数与复变函数,解析函数,复变函数的积分,复级数,留数及其应用。积分变换部分内容有:傅里叶变换和拉普拉斯变换。本书例题丰富,论证严谨,易教易学。每章后有主要内容简要概括。
《复变函数》介绍复变函数的基本概念、基本理论和方法,并结合计算机,使学生能利用数学软件解决一些简单的与复变函数有关的计算问题,内容包括复变函数、解析函数、复积分、复级数、留数、共形映射和MATLAB在复变函数中的应用等,每章均有习题,供学生练习之用。 《复变函数》可作为工科类各专业本科学生的教材和相关教师的教学参考书。
复变函数与积分变换是高等院校理工类各专业的一门重要基础课程。本书是根据国家教育.部高等教育本科复变函数与积分变换课程的基本要求,结合目前高中实行新的课程标准后学生对本课程的要求,并结合作者多年教授本课
全书分为三章: 章“集合论基础与点集初步”介绍了集合的概念、运算、势,讨论了R n中集合的特殊点和特殊集及其性质;第二章“可测集与可测函数”,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章“ Lebesgue 积分及其性质”定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习“实变函数” 多体会数学创新方法,本书提供了四个附录供学生自学,也便于教师概略性地选讲。 本书的适用对象为数学与应用数学专业本、专科学生。因本书注重挖掘“实变函数”中数学创新思维与初等数学或日常思维的联系,因而尤其适宜师范院校数学专业本、专科学生使用。
本书是作者在多年从事实变函数教学实践所积累的大量实际教学经验的基础上编写而成的。全书对实变函数中的主要概念和定理作了细致的解释和比较直观的描述,叙述深入浅出,易学好懂。内容包括集合、点集、可测集合、可测函数、Lebesgue积分、微分与不定积分的函数空间。在有关定理的证明时,尽可能地对其证题思路进行分析和引导,从而极大地降低了理解难度。在例题的选取方面,注意到了难度上的阶梯配置,由浅入深,循序渐进。另外每一章末还配备了一定数量的习题,为学生课后的学习巩固提供了有益的帮助。 本书可用作普通高等院校数学类本专科学生的教材或考研复习参考书,也可用作理工科有关专业的研究生教材,还可供有关教师及研究人员参考。
《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》对于无穷乘积及其对解析函数的应用给予了更深层次的介绍,《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》总结了一些计算无穷乘积的常用方法和惯用技巧,叙
本书共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与最值的相关应用。