欧几里得编著兰纪正、朱恩宽编译的《几何原本/汉译经典》是世界上、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生深刻的影响。
《数林外传系列:向量复数与质点》主要论述用向量解决常见几何问题的方法,是基于向量相加的首尾衔接规则的回路法。全书共7章,从被人忽视的向量回路人手,介绍向量形式的定比分点公式和四边形中位线公式及其应用,对垂直问题、圆问题、三角形五心问题等作了专题研究;同时探讨了与向量法密切相关的复数法和质点法;对于不同解法之间的优劣,列举大量实例进行比较研究。 《数林外传系列:向量复数与质点》是在《绕来绕去的向量法》基础上进一步研究的成果,可供中学和大学的数学教师及理工科教师、中学生和大学生、数学爱好者以及数学教育研究者参考。
本书是作者结合多年的Python语言课程教学实践编写的。其内容包括:Python介绍、Python基础知识、Python程序设计、Python网络爬虫、Python高等数学、Python线性代数、Python概率统计、Python插值拟合与常微分方程求解及Python在数学建模中的应用共九章。书中配备了较多的实例,这些实例是学习Python与数学建模必须掌握的基本技能。 本书由浅入深、由易到难,既可作为在职教师学习Python的自学用书,也可作为数学建模培训班学生的培训。
《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》注重科学性、系统性和趣味性,全书共含34篇小文章,每篇文章各自独立成文,所以《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可系统性地研读,也可有选择性地阅读。《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可作为高三复习备考用书,也可供中学、师生及初等数学爱好者研读,或作为数学竞赛辅导资料和师范数学教法方面的。
《灾害与社会管理专家论坛丛书:防灾减灾与社会管理创新(2011)》是“灾害与社会管理专家论坛丛书”之一,包括:统筹规划有序推进加快社会保障制度建设;当前加强和创新社会管理面临的十大问题;关于未来国家综合防灾减灾战略理念、原则与战略目标的断想;社会管理在创新中追求卓越;青海东部自然灾害及发展态势;我国防汛抗旱减灾与管理;直面灾害——医学救援的时代特征与历史重任;国家综合防灾减灾的战略选择与基本思路等内容。
本书系统地介绍了一般拓扑学的基础知识。全书共分8章,内容包括:预备知识、拓扑空间,Moore-Smith收敛,子空间、乘积空间和商空间,度量空间和度量化,紧空间,一致空间,函数空间。每章后还附有适量的习题,以供读者学习后加深理解。本书的特点在于叙述深入浅出,证明过程严谨,详尽易懂,并辅以丰富的例题,使得深奥难懂的拓扑学变得轻松易学。本书适合作大学数学专业本科高年级或硕士研究生低年级的拓扑学入门教材,也可供高等学校相关专业师生参考。
本书是一本黎曼几何的入门教材,内容包括:微分流形引论、张量分析、黎曼几何基础、测地线理论及子流形几何。本书对研究黎曼几何的三种表示法——不变形式法、活动标架法和自然坐标法——作了统一的处理,介绍了微分流形与黎曼几何中的各种基本概念和技巧,兼顾到经典理论和近代进展的内容,以使读者在学完本教程后能独立从事研究工作。修订版还增加了6个附录,以适应读者进一步的要求。 本书可作为综合性大学、师范院校数学系各专业高年级选修课教材及研究生教材,也可供数学和物理学工作者参考。
《微积分学习辅导与解题方法》是高等学校经济类、管理类各学生学习《微积分》课程的辅导教材。内容包括一元函数微积分,多元函数微积分,无穷级数,微分方程与差分方程。 《微积分学习辅导与解题方法》强调对基本概念、基本理论内涵的理解及各知识点之间的相互联系。选题广泛、典型,既有基本题,又有综合题、提高题,用“讲思路举例题”与“举题型讲方法”的方式来揭示解题规律与思维方法,以使读者融会贯通,举一反三,达到正确理解、巩固所学知识和灵活运用;纠正在运算方法、运算过程中常犯的;掌握解题思路、解题方法;提高逻辑推理和分析判断能力;提高解题技巧。 《微积分学习辅导与解题方法》每章有小结并配有自测题;自测题附有参考答案与解法提示。 《微积分学习辅导与解题方法》是经济类、管理类学生学习期间和报考
分形几何的概念是由B.Mandelbrot于1975年首先提出的,十几年来,它已经迅速发展成为一门新兴的数学分支。这是一个研究和处理自然与工程中不规则图形的强有力的理论工具,它的应用几乎涉及自然科学的各个领域,甚至于社会科学。并且实际上正起着把现代科学各个领域连结起来的作用。人们把它与耗散结构及混沌理论共称为20世纪70年代中期科学上的重要发现。 《分形几何:数学基础及其应用》是一本1990年才在英国初版的介绍分形理论与应用的专著,部分叙述分形几何的基本理论,主要是分维的定义与计算技巧。第二部分,广泛地介绍了分形理论在数学与物理上的各方面的应用。 《分形几何:数学基础及其应用》集分形理论与应用于一体,处理方法简单明了,有很强的可读性。译著中保留了原书的百幅左右的精美分形图像,是一本很好的研究生教材,