《几何原本》成书于公元前三百年左右,全书十三卷,是欧几里得将古希腊数学集大成的著作,包括了希腊科学数学家:泰利斯、毕达哥拉斯、希波克拉提斯等人的成果。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。全书章节安排严谨,由定义、公设、设准、命题(定理)、证明,以及符号和图像所构成,《几何原本》被翻译成世界上几乎所有的文字,对人们理性推演能力的影响,即对人的科学思想的影响深刻且巨大。
《离散数学》是创新方法工作专项项目“科学思维、科学方法在高等学校教学创新中的应用与实践KM教学法的研究与实践”的主要研究成果之一。本书共分4篇:篇为数理逻辑,包括命题逻辑和谓词逻辑;第2篇为集合论,包括集合、二元关系、函数、集合的基数;第3篇为代数结构,包括代数、群论初步、格与布尔代数;第4篇为图论,包括图的基本概念、图的连通性、图的矩阵表示和特殊图等。本书每章均有本章小结、相关知识点的思维形式注记图和扩展阅读,每篇均有本篇知识逻辑结构图,力图在内容、体例等方面形的模式。 本书可作为高等学校计算机及相关离散数学课程教材,也可供相关的教学科研人员与工程技术人员参考。
本书是关于一般拓扑的一部经典著作.书中系统地介绍了一般拓扑的基本知识.正文共分七章,包括拓扑空间、Moore-Smith收敛、乘积空间和商空间、嵌入和度量化、紧空间、一致空间、函数空间.此外,还有一章预备知识和一个附录.每章之后有大量问题,作为正文的补充和延伸,有助于读者更好地理解正文的内容.书末由译者加写了一个附录,介绍了早期不分明拓扑学发展的概貌. 本书正文七章由吴从忻翻译,其余由吴让泉翻译.增添的附录由吴从忻撰写. 本书可供高等院校数学系师生及有关的专业工作者参考.