基于项目学习的理论与实践,结合师范生的数学核心素养要求,以魔术游戏为载体,开发项目教学资源是有意义的。魔术游戏中的数学经多轮教学实践,使学生在真实的情境中经历观察、体验、探究、交流、感悟的过程,体会素养的发生、发展、深化与积淀。 该研究总结凝练了以初等数学知识、原理为主,以扑克牌、数表、骰子等为道具设计的典型魔术游戏项目;提出了魔术项目设计的六环节:魔术示范-魔术揭秘-魔术拓展-数学素养-实践思考-发展评价;编写了促进数学核心素养落地的魔术教学案例。 该著作的创新之处,首先,魔术、游戏与数学相结合形成研究的整体内容,基于读者的视觉和操作偏好,遵循教、学、做、创的思路编排内容,符合知、行、思的认知发展规律,凸显科学性;其次,魔术探究从形象到抽象、特殊到一般、猜想到推理、模型化到应用的
本书是根据*颁布的《理工科类大学物理实验课程教学基本要求》,结合大学物理实验仪器设备实际情况,在总结多年大学物理实验教学实践经验的基础上编写而成的。 全书共分4章,绪论部分介绍了物理实验的目的和任务、基本规则和要求,第1章介绍了测量误差理论、不确定度、实验数据处理方法等内容,第2章共9个基础实验,第3章共12个近代物理与综合应用性实验,第4章共9个研究及设计性实验,用于学生第二课堂的自主学习,附录中给出了常用的物理参数。书中所有思考题都配有参考答案,大部分实验项目有配套视频,方便在线学习。 本书可作为高等学校工科各专业的大学物理实验课程教材和参考书。
在经济学中,绝大多数的非合作博弈理论集中研究博弈中的均衡问题,尤其是纳什均衡及其精炼。对均衡什么时候出现以及为什么均衡会出现。传统解释是,均衡是在博弈的规则、参与人的理性以及参与人的支付函数都是共同知识的情况下,由参与人的分析和自省所得出的结果。不论是在概念上还是在实证上,这个理论都存在许多问题。 在《博弈学习理论》一书中,朱·弗登伯格和戴维·K·莱文提出了另一种解释:均衡是并非完全理性的参与人随着时间的推移寻求*化这一过程的长期结果。他们研究的模型为均衡理论提供了基础,并为经济学家评价和改进传统的均衡概念提供了有用的方法。
《金融数学》较系统地介绍金融数学中的一些核心理论知识, 内容包括金融产品介绍、期权定价的离散模型 二叉树模型、随机积分与布朗运动、期权定价的连续模型 欧式期权定价的Black-Scholes 模型及其推广、数值计算与模拟 蒙特卡罗方法和有限差分方法、奇异期权的介绍和数值解法、利率与债券模型等. 每章*后还配备适量的相关习题. 为了便于在实际中直接应用模型, 相关章节数值计算中还给出了代码实现思路, 读者可以自行利用 MATLAB 软件在计算机上实现.
本书第1~5章是变分方法所需要的泛函分析基础内容;第6章主要介绍了相互等价的Ekeland变分原理与Cansti不动点定理,侧重于变分原理与不动点理论之间的关系;第7~8章是Sobolev空间和Banach空间中微分学的基本知识,同时讨论了Poisson方程与泛函极值问题的互相转化;第9~10章的重点是临界点理论和泛函极值问题,分别用Ekeland变分原理和下降流线方法给出了著名的山路定理,应用山路定理和最小作用原理研究二阶半线性椭圆方程边值问题,同时包括与单调梯度映射相关的变分方法;最后第11章致力于变分方法在具体工程问题中的应用。
本书从信息科学的角度讲解离散数学,在保持数学体系完整性和数学内容严谨性的同时,用生动活泼的语言介绍离散数学四大分支(数理逻辑、集合论、抽象代数、冈论)的发展史及其与信息科学的紧密联系,用深入浅出的语言
本书是为应用数学专业本科生、工科硕士研究生所编写的一门 化课程教材,是作者综合多年的教学实践,在原有教学讲义基础上,经过反复修订而成的。本书主要内容包括线性规划及其对偶理论、 性条件、无约束 化问题和约束 化问题。每部分内容都较全面系统地介绍了其基本理论和优化算法。作为教材,每章后附有习题,以便加深学生对所学知识的理解和掌握。本书除作为教材外,也可作为从事 化方面工作的科研人员和工程技术人员学习参考用书。
套书《不定方程及其应用》涉及数论、有限群论、组合数学、图论等多学科,以不定方程作为一条主线,并将不定方程的结果与方法应用于代数数论、有限单群、组合数学等数学领域中一些重要问题的研究。本套书选择了近几十年来 外数学竞赛中的经典试题,进行了分析讲解,供数学爱好者参考,本书是其中的上册,由南秀全、杜雯编著。全书共分六章,内容包括二元一次不定方程及其解法、多元一次不定方程、多元一次不定方程组等。
由于优化模型在各专业的研究领域中有着极其广泛的应用,本书以优化模型为主题讲述了几类较为基础且重要的数学模型,包括线性规划模型、非线性规划模型、整数规划模型、多目标规划模型、目标规划模型、动态规划模型、图与网络优化模型,共计七个章节。针对往年课程教学过程中学生普遍提出的困惑,即求解数学模型对于学生具有一定编程基础要求。因此,在各章节都以一定篇幅介绍三类常用求解优化模型的软件语言:LINGO、MATLAB以及Python。LINGO软件对于没有编程基础的学生也能够较快地掌握。MATLAB软件以及Python软件是大部分工科学生的基础工具,可在不增加学生负担学习成本上,着重介绍如何利用软件解决优化问题。
作者根据多年数学建模竞赛辅导工作的经验编写本书,涵盖了很多同类型书籍较少涉及的新算法和热点技术,主要内容包括时间序列、支持向量机、偏最小二乘回归分析、现代优化算法、数字图像处理、综合评价与决策方法、预测方法以及数学建模经典算法等内容。 本书所选案例具有代表性,注重从不同侧面反映数学思想在实际问题中的灵活应用,既注重算法原理的通俗性,也注重算法应用的实现性,克服了很多读者看懂算法却解决不了实际问题的困难。 本书所有例题均配有Matlab或Lingo源程序,程序设计简单精炼,思路清晰,注释详尽,有利于没有编程基础的读者快速入门。同时很多程序隐含了作者多年的编程经验和技巧,为有一定编程基础的读者深入学习Matlab、Lingo等编程软件提供了便捷之路。 本书配有丰富的课件资源,包括教师授课PPT课件、主教材的程序
本书为了满足普通高等院校及高职高专类院校经济、金融、管理专业本专科学生学习的需要,定位在\\\\\\\"以应用为目的,以必需够用为度”的平台上,简略了定理的推导、证明,采用了学生容易理解的方式叙述,并选配了适量的例题、练习及章节自测,使学生掌握基本理论和解题方法,并结合应用例题解决经济和日常生活中遇到的问题,提高学生应用数学和数学应用的能力。 本书内容包括函数、极限与连续、导数及应用、积分的计算及应用、行列式、矩阵、线性方程组及线性规划等,并在附录中介绍了数学实验,每章节附有习题。