本书结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值和数值线性代数等。为巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了matlab练习题和测试题。本书叙述简洁,通俗易懂,理论与应用相结合,适合作为高等院校本科生“线性代数”课程的教材,同时也可作为工程技术人员的参考书。
《线性代数》是为高等学校工程、管理和经济类专业编写的线性代数教材,主要包括:行列式、矩阵、向量、线性方程组、特征值与特征向量、二次型和线性空间与线性变换等线性代数的基本内容。每章配有基础练习和综合练习,以适应不同层次学生的需要。书中除了介绍线性代数的基本理论和方法外,还在拓展阅读部分介绍了一些线性代数在工程、经济等多个领域的应用和MATLAB算例,以帮助读者充分认识线性代数的现实意义。 《线性代数》配有数字课程资源,包括基础练习答案和综合练习详解,还包括与教材内容相配套的教学视频,便于读者自学。
《线性代数》是全国高等农林院校“十三五”规划教材,内容包括线性方程组、矩阵、行列式、向量组的线性相关性、矩阵的特征值与特征向量、方阵的对角化、二次型以及线性代数实验。《线性代数》可作为高等农林院校线性代数课程教材,也可作为其他院校相关课程的教材或参考书,还可作为科技人员的参考书。
《离散数学及其应用(原书第7版)》是经典的离散数学教材,为全球多所大学广为采用。《离散数学及其应用(原书第7版)》全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构、算法思想以及应用与建模。全书取材广泛,除包括定义、定理的严格陈述外,还配备大量的实例和图表说明、各种练习和题目以及丰富的历史资料和网站资料。第7版在前六版的基础上做了大量的改进,使其成为更有效的教学工具。
本书较为系统地介绍了计算机科学与技术等相关专业所必需的离散数学知识,全书分为4个部分(数理逻辑、集合论、代数结构和图论),共7章。章介绍命题及命题逻辑; 第2章介绍一阶谓词逻辑及其推理理论; 第3章介绍集合的基本概念和性质; 第4章介绍二元关系和函数; 第5章介绍代数系统基本概念; 第6章介绍几个典型的代数系统; 第7章介绍图论的基础内容和一些特殊图及其性质。各章之后配有适当难度的习题及其简要参考答案,便于学生课后练习。每个部分结束后配有内容小结,便于学生自学、复习和提高。本书可以作为高等院校计算机科学与技术、软件工程、通信工程等相关专业的教材,也可以作为考研学生及计算机工作者的参考书。
本书结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值和数值线性代数等。为巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了matlab练习题和测试题。本书叙述简洁,通俗易懂,理论与应用相结合,适合作为高等院校本科生“线性代数”课程的教材,同时也可作为工程技术人员的参考书。
《抽象代数——方法导引》是一本介绍抽象代数基础知识和解题技巧的学习方法辅导书。在编者徐诚浩多次讲授这门课程的基础上,并根据历经三次修改的自编讲义,本书系统地整理了一些基本概念、重要定理与解题方法,特别还收集并改正了学生在初学阶段易犯的各类错误。 本书在讲清各种概念的前提下,介绍了一些常用解题方法和技巧。在书中列出的定理是相当基本的,所给出的证明(包括定理和例题)是相当简洁的,并同时尽可能举一些反例作辅助说明。每看完一个证明,应找出关键步骤和所用技巧,然后归纳整理成便于记忆的几条,这无疑是收获甚大的学习方法。 《抽象代数——方法导引》着重介绍抽象代数基础理论(群、环、体、格与扩域)中的各种解题方法与技巧,并配有近200个例题和300多道习题(基本上有提示和答案)。 所列出的约90个比较重要
包括五章内容分别为:靠前章行列式,第二章矩阵,第三章矩阵的初等变换与线性方程组,第四章向量组的线性相关性,第五章相似矩阵与二次型。本书涵盖内容丰富,侧重有关专题的理论及应用研究。本书可作为普通高等学校理工科专业学生的教材用书。
本书是为理工科大学理工与经济学类专业"线性代数"课程编写的教材,内容包括:线性方程组与矩阵,方阵的行列式,矩阵与向量的运算,向量组与向量空间,矩阵特征值和特征向量,二次型,Matlab在线性代数中的应用。每节内穿插有例题,练习题,每章末附有习题。书末附录有行列式的全排列及逆序数方法定义,习题解答。本书结合理工科与经济类专业教学实际,注意理论和实际相结合,选材适当,体系新颖,论述严谨,条理清楚,对概念的解释透彻,便于教学和学生自学。
《几何与代数导引》覆盖了“高等代数”与“解析几何”这两门课程的教学内容。《几何与代数导引》共分8章,分别讨论:向量、平面与直线,二次曲面与坐标变换,线性空间与线性映射,矩阵、线性方程组与行列式,多项式,线性变换,双线性型与欧氏空间,仿射空间与射影空间。本书力求体现几何与代数的内在联系,强调线性空间与线性映射的观点,突出向量、坐标、标准形的线索,注重学生的抽象思维能力和空间想象能力的培养。
《线性代数:学习辅导与典型问题解答(第2版)/21世纪高等学校规划教材》是编者所编的《线性代数》(第2版)的配套学习指导书,可作为大学理工科学生学习线性代数课程的辅导教材。 《线性代数:学习辅导与典型问题解答(第2版)/21世纪高等学校规划教材》内容与教材《线性代数》的内容平行,虽紧扣原教材但又具有相对的独立性。《线性代数:学习辅导与典型问题解答(第2版)/21世纪高等学校规划教材》共分四章,包含矩阵、线性方程组、二次型、线性空间与线性变换。每章由主要内容、基本要求与疑难解析、典型例题、习题解答等四个部分组成。书中还增设一个附录,收集了2000年至2015年硕士研究生入学考试数学试题线性代数部分试题及其解答。
本辅导教材由以下几部分组成: 1.基本要求、重点与难点:列出相应各章的基本要求、重点、难点内容,以帮助读者总体把握本章内容。 2.主要概念与公式:列出各章的基本概念:定理与公式,突出必须掌握和理解的核心内容。 3.典型例题分析:精选历年各院校研究生入学考试试题中具有代表性的试题进行了详细的解答,这些例题涉及内容广、题型多、技巧性强,可以使广大同学举一反三、触类旁通,开拓解题思路,更好地掌握高等代数的基本内容和解题方法。 4.课后习题全解:教材中课后习题数量大、层次多,许多基础性问题从多个角度帮助理解基本概念和基本理论,锤炼读者基本的解题方法,许多层次较高的问题有助于广大读者进一步的提高和应用,不少问题具有独特的解题思路和方法。针对以上两点,我们对教材课后习题给出了