本书是一本关于三维Euclid空间中光滑曲线与曲面一般几何理论的基础性专门学术著作。全书共9章,可划分为四个部分。第1章为第一部分,主要讲授三维矢量的代数与分析,是全书的理论基础。第2、3章为第二部分,属于三维Euclid空间的曲线论。第4~8章为第三部分,属于三维Euclid空间的曲面论。第9章为第四部分,深入详细地研究了包络现象。相对于既有文献,本书补充了新内容,对传统内容也往往采用新方法加以处理,对于同一问题有的还给出了不同的解法或证明,以例题的形式对工程中常见曲线、曲面的几何性质做了比较深入的定量研究讨论,还能够把其他数学分支的理论与方法自然地应用于经典微分几何的研究。本书思路清晰,推导过程详尽,论述深入浅出、直接明快,既不失作为数学著作的严谨与严格,又注意联系工程实际。
《航空基础技术丛书:航空材料技术》共分9章,从航空材料概论开始,分别介绍了高温结构材料技术、铝合金材料技术、钛合金材料技术、超高强度结构钢技术、透明材料与透明件制造技术、高温防护涂层材料技术、橡胶密封材料技术和先进航空材料检测技术等专业的基本情况及其发展。
《从数学观点看物理世界——几何分析、引力场与相对论》是一本关于微分几何与广义相对论的专著,其特点是强调用数学结构和物理现象作为不可分割的统一体去发现和揭示数学与自然奥秘.在这部著作中,提出一种关于暗物质与暗能量的统一理论,它是非表象的理论,可很好地解释暗物质与暗能量现象.本书不仅提出和总结了作者的许多新理论和新结果,而且采用直指本质的方式陈述和介绍有关方面成熟的理论与概念.
《环境试验》较系统地介绍了实验室环境试验和自然环境试验。实验室环境试验涉及气候环境、机械环境、化学活性物质环境、生物环境、机械活性物质环境、辐射环境等试验,自然环境试验涉及大气环境、海水环境和土壤环境等试验。全书共28章,主要介绍了每种环境试验的目的与意义、环境影响效应、试验条件、试验程序、试验设备、有关技术与应用等内容,具体试验包括高温、低温、温度变化、低气压、太阳辐射、湿热、霉菌、盐雾、酸性大气、流体污染、流动混合气体腐蚀、二氧化硫、水、砂尘、爆炸性大气、风压、积冰/冻雨、正弦振动、随机振动、冲击、碰撞、稳态加速度、跌落、倾斜与摇摆、振动—噪声—温度、温度—湿度—振动—高度和各种自然环境试验。
《分形几何与流体》是瞿波在英国龙比亚大学攻读博士的学位论文的核心成果,深入浅出地介绍了分形及其在流体中的应用,详细论述了如何用分形中的分数布朗运动模拟流水中污染物的轨迹,包括对海湾和海洋中污染物传播轨迹的模拟。是一本实用性强、浅显易懂的应用数学学习和研究的参考用书。
本书使用向量的概念对国内高校工科“线性代数”的课程内容进行了较全面的几何分析。从向量的几何意义开始,分别讲述了向量组、向量空间、行列式、矩阵、线性方程组和二次型的几何意义或几何解释,其中不乏重要概念的物理意义的解释。这本书就像一串项梁,把上百个概念和定理的几何意义串在一起敬献给读者朋友。 本书文字多为作者原创,比如叉积的物理意义,克莱姆法则、雅可比矩阵、相似/合同矩阵、转置矩阵/对偶、矩阵乘积的行列式等系列概念的几何意义等,应用方面如使用矩阵分析的方法分析电子振荡器的工作原理等。 本书图文并茂,思路清晰、
《塞伯格-威顿方程及其在光滑四流形拓扑中的应用(英文版)》讲述seiberg-witten不变性的作品是众多研究流形作品的一次革新。从自旋c结构的经典材料和相关的狄拉克算子开始,接着在恰当的无限维空间的非线性算子背景中讨论了seiberg-witten方程。给出了这些方程的解空间,叫做seiberg-witten模空间,是有限维的,并且计算出维数。为了和su(2)的情况相对比,seiberg-witten模空间被证明了具有紧性。seiberg-witten不变量实际上是seiberg-witten模空间表示地构形空间中的同调类。最后一章通过计算大多数kahler曲面给出了这些新的不变量,并且从这些曲面衍生出一些基本的拓扑序列。
本书是作者根据多年的微分几何课程的教学经验,并参考外的微分几何著作,为本科生编写的微分几何教材.该教材已被列为安徽省省级规划教材.本书主要讲述经典微分几何的曲线论和曲面论,全书共7章,内容包括:预备知识、标架场、空间曲线的Euclid几何、曲面上的微积分、形状算子、 QUOTE
《自然哲学的数学原理》是一次科学革命的集大成之作,它在物理学、数学、天文学和哲学等领域产生了巨大影响。在写作方式上,牛顿遵循古希腊的公理化模式,从定义、定律(即公理)出发,导出命题;对具体的问题(如月球的运动),把从理论导出的结果和观察结果相比较。全书共分五部分,首先“定义”,这一部分给出了物质的量、时间、空间、向心力等的定义。第二部分是“公理或运动的定律”,包括的运动三定律。接下来的内容分为三卷。前两卷的标题一样,都是“论物体的运动”。一卷研究在无阻力的自由空间中物体的运动,许多命题涉及已知力解定受力物体的运动状态(轨道、速度、运动时间等),以及由物体的运动状态确定所受的力。第二卷研究在阻力给定的情况下物体的运动、流体力学以及波动理论。
法雷尔编著的《流形拓扑导论讲义(精)》的内容涵盖了流形拓扑学最基本的思想与结果,包括h—与s—配边定理,Pontryagin类的拓扑不变性、手术理论、代数K理论等,可以作为初学者进入这一领域的“路标”。《流形拓扑导论讲义(精)》可作为几何与拓扑领域的研究生教材或参考书,也可以供相关研究人员参考。
未解决问题对于一个学科的重要性不言而喻,很多学科的发展都基于某些多年未解决问题的所做的工作或解决。另外对数学进展的及时了解对数学研究也同等重要。本书收集了丘成桐教授关于微分几何未解决问题的讲义。作为微分几何领军科学家, 这几年丘先生在大陆和台湾围绕这些问题,开设了系列讲座,论述了这些问题的意义以及它们之间的联系,这些内容和观点对微分几何的研究和研究者都是非常有意义的。另外本书还包含了当代数学中一些基本主题涉及的未解决问题及国际知名学者的综述性文章, 作者为 Murad Alim, David Baraglia, Arnaud Beauville, Eric King-wah Chu, Wen-Wei Lin, Joris van Hoboken, Lizhen Ji, James S. Milne, NanhuaXi.
本书系根据苏联国营技术理论书籍出版社出版的楚倍尔毕雷尔著的 本书共分四编 本书适合高等工业学校
《罗巴切夫斯基几何学初步》共有12章,分别为:平面几何学的公理、几何学的补充定理、罗巴切夫斯基几何学的基本定理、多边形的角欠和面积、罗巴切夫斯基平面上的基本曲线、空间几何学、罗巴切夫斯基的空间几何学、极限球面上的几何学、指数函数和双曲函数、双曲三角形、罗氏几何学的相容性、罗巴切夫斯基几何学与现代数学。
丢番图问题主要从代数几何进行考虑。书中涵盖了一些研究该课题的基础方法,如高度理论, Néron函数及其在一些经典定理中的应用,如Mordell-Weil 定理、关于积分点的西格尔定理、希尔伯特的不可约定理、Roth定理及其他。该书取代了 Diophantine Geometry,涵盖了许多重要的新资料,如Néron函数理论及Tate和 Silverman的研究结果。目次:值;值的恰当集