本书是在自然公理系统中建立概率论的*部著作.本书前五章建立因果空间、*试验、概率空间、条件概率捆和独立性的理论,重点介绍离散型、Kolmogorov型、独立乘积型概率空间,形成概率论的基础理论.《BR》第6、8章论证*变量、*向量和宽*过程是科学实验中子*局部的数学模型;应用概率论基础理论介绍因果结构图、各种条件分布函数和独立性,建立数学期望、方差和协方差等数字特征的知识,形成*变量和*向量的基本理论,以及*过程的初步知识;*后两章介绍两类*重要的统计规律——大数定理和中心极限定理.《BR》
本书叙述了研究包络问题的初等方法和微分几何方法,共分为两编。 编介绍直线族、圆族、圆锥曲线族和高次曲线族的包络以及这些包络在很多方面的应用;第二编深入探讨了包络面、可展曲面、直接和间接展成法,并利用包络解决方程问题。书中补充若干附录,使内容更加丰富。
本书共分四编。首先介绍差分方程概论及一些基本定理;其次介绍用变换的眼光看差分方程;再次介绍差分方程解的稳定性;最后介绍差分方程的实际应用。
向量既是一种图形,也是一种数学表达式,因而向量法的特点是数形结合,且运算有法可循,带有综合法的技巧,呈现或蕴含坐标法的规则,是一种“价廉物美”的数学工具、本书介绍了向量的概念及运算,研究并举例说明了一些特殊数学关系的向量表示,给出了一些平面几何定理的向量法证明一本书运用大篇幅介绍了如何运用向量知识处理中学代数问题、平面几何问题、立体几何问题,还介绍了向量与复数相互配合运用问题一全书中以大量的高考试题、数学竞赛试题为实例,运用向量法来求解.
本书总结了各种广义的最小二乘问题的理论与计算的最新成果.主要包括最小二乘问题、总体最小二乘问题、等式约束最小二乘问题以及刚性加权最小二乘问题等的理论与科学计算问题.由于四元数矩阵及四元数矩阵的计算在彩色图像处理、量子物理和量子化学等领域有广泛应用,在第二版中添加了四元数矩阵及四元数矩阵的实保结构算法等最新内容。 由于各种广义奇异值分解在解决矩阵论和数值代数问题中有着重要的作用,书中也较详细地介绍了广义的奇异值分解,并应用于解决若干矩阵论和数值代数问题.本书需要的预备知识为数值代数、矩阵论和四元数矩阵分析。
地球科学是认识地球形成和演化的自然科学。当前地球科学正在进入建立“地球系统”理论知识和方法技术体系的新时代,外的地球科学研究正在朝该方向发生深刻变革。《中国地球科学2035发展战略》阐述地球科学各分支学科的科学意义与战略价值、发展规律与研究特点,凝练地球科学各分支学科的关键科学问题、发展思路、目标及方向,探讨了2035年前我国地球科学的学科发展布局、发展方向和学科交叉的重大科学问题等,以期为国家发展地球科学提出政策建议。
本书是一部经典的随机过程著作,叙述深入浅出、涉及面广。主要内容有随机变量、条件期望、马尔可夫链、指数分布、泊松过程、平稳过程、 新理论及排队论等,也包括了随机过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用。 2版几乎各章都有新的内容,也新增了例子和习题,其中 的变化是增加了讲解耦合方法的 2章,讲述了这种方法在分析随机系统时的作用。还值得一提的是,第5章介绍了一种可以适用于平稳和非平稳泊松过程的获取结果的新方法。本书配有上百道习题,其中带星号的习题还提供了解答。
随着计算机和信息技术迅猛发展,医学、生物学、金融、以及市场等各个领域的大量数据的产生,处理这些数据以及挖掘它们之间的关系对于一个统计工作者显得尤为重要。本书运用共同的理论框架将这些领域的重要观点做了很好的阐释,重点强调方法和概念基础而非理论性质,运用统计的方法 是突出概念而非数学。另外,书中大量的彩色图例可以帮助读者 好地理解概念和理论。