本书内容简介:This book is an outgrowth of a course which I gave atOrsay duringthe academic year 1 966.67 MY purpose in those lectureswas to pre-sent some of the required background and at the sametime clarify theessential unity that ests between several relatedareas of analysis.These areas are:the estence and boundedness ofsingular integral op-erators;the boundary behavior of harmonicfunctions;and differentia-bility properties of functions of severalvariables.AS such the commoncore of these topics may be said torepresent one of the central develop-ments in n.dimensional Fourieranalysis during the last twenty years,and it can be expected tohave equal influence in the future.These pos.
本书讲述了复变函数的经典理论。作者用易于理解的方式严密介绍基础理论,强调几何观点,避免了一些拓扑学难点。书中首先从拓扑上较简单的情形论证了柯西积分公式,并引出连续可微函数的基本性质。然后阐述共形映射、解析延拓、黎曼映射定理、黎曼面及其结构,以及闭黎曼面上的解析函数等。书中包含大量的图示和丰富的例子,并附有习题,可以帮助读者增强对课程的理解。 本书可作为高等院校理工科专业复分析的入门教材,也可作为更学习研究的参考书
《研究生教学用书·泛函分析教程》是研究生泛函分析教材。全书共7章,以概述线性泛函分析的基本理论为入口,分别介绍了Banach空间上紧算子和Fredholm算子、Banach代数、C*代数初步和Hilbert空间上正规算子的谱分析、无界算子、算子半群、无限维空间上的微分学、拓扑度理论等。《研究生教学用书·泛函分析教程》既注意以现代数学的观点统率各章节内容,突出泛函分析中重要的基本理论,也精选了在应用中受到普遍关注的若干题材,同时还配备了一定数量的难易不等的习题,以利读者加深理解,启发思考。
ThiseditionofBoundedAnalyticFunctionsisthesameasthefirsteditionexceptforthecorrectionsofseveralmathematicalandtypographicalerrors.Ithankthemanycolleaguesandstudentswhohavepointedouterrorsinthefirstedition.TheseincludeS.Axler,C.Bishop,A.Carbery,K.Dyakonov,J.Handy,V.Havin,H.Hunziker,EKoosis,D.Lubinsky,D.Marshall,R.Mortini,A.Nicolau,M.ONeill,W.Rudin,D.Sarason,D.Suarez,C.Sundberg,C.Thiele,S.Treil,LUriarte-Tuero,J.Vaisali,N.Varopoulos,andL.Ward.
《数学统计学系列:实变函数论》是一本经典著作,由论点集、极限之概念、函数、距离及联结、容量及可测性、线性体系、可测函数、定积分、不定积分及加性全连续集合函数、单变数函数、多变数函数共11章内容构成,《数学统计学系列:实变函数论》译笔带有文言文遗风,读之别有风味。《实变函数论》可作为大学数学专业教师和学生教学学习用书,也可作为数学爱好者的兴趣读物。
本书是一本经典著作,由论点集、极限之概念、函数、距离及联结、容量及可测性、线性体系、可测函数、定积分、不定积分及加性全连续集合函数、单变数函数、多变数函数共11章内容构成,本书译笔带有文言文遗风,读之别有风味。《实变函数论》可作为大学数学专业教师和学生教学学习用书,也可作为数学爱好者的兴趣读物。
“泛函”这个名词是由法国数学家阿达马(Hadamard,1865-1963)在1897年研究变分问题时引进的。“泛函”也称泛函数,它是对实(复)值函数概念的拓广或发展,通俗地说,泛函就是以函数为变元的函数,其基本思想是把函数(或曲线等)看作空间的元素或点,而函数的集合构成了空间,“泛函分析”是研究无限维线性空间的拓扑性质及其“泛函”与“算子”的一般性质的一个现代数学分支,它是无限维分析学的一个重要组成部分。 本书介绍线性泛函分析的入门知识,全书分为六章,包括:距离空间、赋范线性空间、内积空间、有界线性算子和有界线性泛函、有界线性算子的谱分析、广义函数与obolev空间。本书可作为尚未学过基础泛函分析的硕士研究生的泛函分析教材或学习参考书,也可作为数学系高年级本科生的选修课教材或学习参考书。
《差分方程导论(英文版)(第3版)》是一本学习差分方程的本科生教程。书中将差分方程的经典方法和现代方法有机结合,包括了最的一手材料,并且在表述上足够简洁明了,适合高年级的本科生和研究生使用。《差分方程导论(英文版)(第3版)》是第三版,这版中包括了更多的证明,图表和应用,增加了许多新的内容,如,讲述高阶尺度差分方程的一章;有关一维映射的局部稳定性和全局稳定性的内容;介绍解的渐进思想的一节;levin-may定理的详细证明以及lapflour-beetle模型的结果。读者对象:数学专业的本科生,研究生和相关的科研人员。
《椭圆函数与模函数:从一道美国加州大学洛杉矶分校(UCLA)博士资格考题谈起》详细介绍了椭圆函数以及模函数的相关知识。全书共分为三章,分别为:椭圆函数、模函数、椭圆函数与算术学。《椭圆函数与模函数:从一道美国加州大学洛杉矶分校(UCLA)博士资格考题谈起》可供从事这一数学分支或相关学科的数学工作者、大学生以及数学爱好者研读。