《浙江省污染源自动监控系统运行与管理》共6章,系统介绍了污染源自动监控工作人员应知应会的基础知识要点,强调理论联系实际,有助于基本工作能力的提升。 《浙江省污染源自动监控系统运行与管理》以政策法规为带领,以标准规范为基础,从污染源自动监控系统的建设、运维、监管、应用等方面,对实际工作经验进行了总结凝练,结合诸多经典案例进行实例分析,实用性较强,将为今后污染源自动监控工作提供重要参考。
《人类饮食文化学》中作者从阐述人类文化和饮食文化的基本属性入手,明确了饮食文化学这门学科的性质和地位,详细阐述了历史饮食文化的基本类型、中国饮食文化的演进、人类的食物崇拜、人类饮食的游戏、探究营养的奥秘、人类饮食文化的艺术创造工程、人类饮食文化大技术体系、饮食文化产品及其工具系统、后工业时代饮食文化的现状与对策等专题内容。
《几何原本》是世界上最、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成了一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生了深刻影响。
本书作者试图通过法门寺地宫出土的宫廷茶具、由唐代宫廷茶具和宫廷茶道的研究,进而对唐代茶业、茶文化的发展展开深入研究。全书分为十章,包括唐和唐以前饮茶的历史发展、法门寺地宫茶具、地宫茶具与宫廷茶风、唐代茶具、唐人制茶和鉴茗技艺、唐人煮茶看火技艺、唐人茶俗、雅士茶风、僧道茶风、唐人饮茶文化的形成和传播。
分形几何的概念是由B.Mandelbrot于1975年首先提出的,十几年来,它已经迅速发展成为一门新兴的数学分支。这是一个研究和处理自然与工程中不规则图形的强有力的理论工具,它的应用几乎涉及自然科学的各个领域,甚至于社会科学。并且实际上正起着把现代科学各个领域连结起来的作用。人们把它与耗散结构及混沌理论共称为20世纪70年代中期科学上的重要发现。《分形几何:数学基础及其应用》是一本1990年才在英国初版的介绍分形理论与应用的专著,部分叙述分形几何的基本理论,主要是分维的定义与计算技巧。第二部分,广泛地介绍了分形理论在数学与物理上的各方面的应用。《分形几何:数学基础及其应用》集分形理论与应用于一体,处理方法简单明了,有很强的可读性。译著中保留了原书的百幅左右的精美分形图像,是一本很好的研究生,可供有兴趣于分
Thiookgrewoutofaone-semestercoursegivenbythesecondauthorin2001andasubsequenttwo-semestercoursein2004-2005,bothattheUniversityofMissouri-Columbia.Thetextisintendedforagraduatestudentwhohasalreadyhadabasicintroductiontofunctionalanalysis;the'aimistogiveareasonablybriefandself-containedintroductiontoclassicalBanachspacetheory.Banachspacetheoryhasadvanceddramaticallyinthelast50yearsandwebelievethatthetechniquesthathavebeendevelopedareverypowerfulandshouldbewidelydisseminatedamongstanalystsingeneralandnotrestrictedtoasmallgroupofspecialists.Thereforewehopethatthiookwillalsoproveofinteresttoanaudiencewhomaynotwishtopursueresearchinthisareabutstillwouldliketounderstandwhatisknownaboutthestructureoftheclassicalspaces.ClassicalBanachspacetheorydevelopedasanattempttoanswerverynaturalquestionsonthestructureofBanachspaces;manyofthesequestionsdatebacktotheworkofBanachandhisschoolinLvov.Itenjoyed,perhaps,itsgoldenperiodbetween1950and1980,culminatinginthedefinitivebookyLindenstraussandTzafriri[138]and[139],in1977a