本书寻找最少且自封(不依赖于未证明的结果)的微积分,即最少的概念:微分和积分(实是一个概念,后者乃前者之和);最少的定理:基本定理和泰勒定理(实是一个定理,后者乃前者的连用);最简的解释(实是两张图)、最短的证明(实是两行算术,没有更多)、最少的数学符号(阿基米德的传统,多用文字和图形).这些概念、定理和证明只用到两张图、两行算术,不用实数,适合于文科;对理科还要加上最少的(即一个)微分方程,这时才用到实数. 简言之,最少的微积分=两个(或一个)概念 两个(或一个)定理十一个方程.归根结底,就是两张图、两行算术,加上一点实数,没有更多。
本书是俄罗斯科学院院士О.А.奥列尼克多年来在莫斯科大学数学力学系为大学三年级学生讲授该课程基础上的扩充。内容包括偏微分方程理论的古典与现代理论的基础部分,以及泛函分析、广义函数理论、函数空间理论方面的一些知识。作者是И.Г.彼得罗夫斯基的学生,在偏微分方程这个方向享有盛名。此书反映了莫斯科大学在这个课程上,20世纪后半叶至今的新情况,可供我国偏微分方程课教学参考。 本书可供综合大学和师范院校数学、物理、力学及相关专业的教师和学生参考,也可供工科院校应用数学系师生参考。
本书介绍椭圆方程的基本性质和方法。作者用自己独特的方法把 De Giorgi-Nash-Moser 迭代、Morrey 估计、逆 Holder 不等式和椭圆组的能量的 blow up 分析系统有机地结合起来, 并且特别强调正则性方法的研究。 内容全面、自封 证明简洁、篇幅适中 在处理正则性理论方面非常具有特色
不管你是理工科系的学生, 还是学商业、国际贸易、经济,可能都有这样的微积分修谋经验: 无论多么专心听讲,教授讲的内容你仍然听不懂。 本书试图告诉读者 “千万不要误以为昕不懂全是自已的错!” 本书是《微积分之屠龙宝刀》的续集,内容从极座标、无穷级数的收敛、空间向量,到参数曲线、多变数函数、偏导数、多重积分、向量场。 想换一种方式,理锯这些令人头疼的课题吗? 目的就是希望帮助读者更容易了解一般教科书里的精髓。
本书为《2l世纪大学数学精品教材》之一,在编写时严格遵循高等学校教学指导委员会关于常微分方程的教学基本要求,力求知识体系相对完整,结构严谨,内容精炼,循序渐进,推理简明,通俗易懂:例题丰富,注重本课程的实际应用背景。本书特别注意穿插介绍了一些历史事件和历史人物的生平及主要的数学贡献。全书由7章组成。第0章是绪论;章是一阶微分方程的初等解法;第2章是一阶微分方程解的基本理论;第3章是高阶微分方程的理论及其解法;第4章是微分方程组的理论及其解法;第5章是微分方程稳定性与定性理论初步;第6章是微分方程的应用与数学模型初步。 本书可作为高等学校数学专业和非数学专业的常微分方程课程教材,亦可供相关教学和科研人员参考。