数据包络分析(DEA)方法是一种应用广泛的效率评价方法。本书结合作者近年来的研究成果,将数据包络分析方法进行扩展与集成,使之成为一种开展系统综合评价的有效方法。本书重点介绍DEA公共权重配置和DMU完全排序方法、DEA中DMU结构分析和效率分解方法、不确定信息条件下的鲁棒DEA方法、径向和非径向DEA集成效率测度方法、基于DEA的资源配置和目标分解方法等DEA领域的前沿建模方法。同时本书还介绍了DEA方法在能源与环境绩效评价、银行和供应链效率分析中的应用。
本书试图较全面地介绍大数据技术的基本原理和方法,包括以统计模型为主的各类数据模型以及它们的计算方法,同时还将介绍这些方法在一些领域(如人工智能)中的应用。
无