现今,数据已无处不在、无时不用,数据驱动管理决策、科学研究、技术发明、经济生活,数据驱动创新发展,数据成为企业资产、成为生产要素。开发大数据应用、实现数字化转型、提升核心竞争力是各类主体所希望的。开发一个大数据应用项目,需要进行充分的数据准备和技术准备,设计好实施方案,解决实际应用中的问题。本书介绍了多个领域的大数据应用案例研究与实践,包括工业、农业、金融、物流、旅游、气象、医疗、城市管理、城市交通等领域。这些应用案例涵盖了大数据应用的大部分领域,也从一个侧面展示了大数据在实际应用中的挑战。
本书系统地阐述信息传播问题中所涉及的各种传播模型、数学优化方法以及计算方法等,并通过对大量信息传播的实际问题进行了建模与分析。该著作将为人工智能、大数据、管理科学、运筹学、人文社会科学等领域开展相关研究的本科生、研究生以及学者提供重要的参考。
内容简介这既是一本系统讲解数据资产价值变现的入门书,又是一本全面介绍数据要素的科普书,它能帮助零基础的读者厘清数据要素各种概念并建立系统的知识体系,同时还能掌握数据资产价值变现的认知、实现路径和实操方法。本书由凯捷咨询前亚太区副总裁、阿里云中国区前咨询总经理撰写,全球数据资产理事会(DAC)联合出品。本书是《精益数据方法论:数据驱动的数字化转型》一书的姊妹篇,后者讲了如何制定数据战略、梳理数据场景、开发数据产品,如何利用精益数据方法转型为数字化企业;前者为数字化企业的数据资产变现给出了方案。全书一共17章,分为5篇。第一篇 数据要素基础与政策环境首先详细介绍了数据要素的定义、特征以及20余个该领域的相关概念,彻底厘清读者对数据要素的认知;然后全面分析了国家在数据要素领域的布局以及与之相
本书的主要内容有:研究数据管理趋势,包括技术发展、法规要求和隐私问题。深?了解可拓展架构,学习各组件之间如何协同?作。探索数据治理和数据安全、主数据管理、?助式数据市场,以及元数据的重要性。
本书的主要内容包括网络数据的定义及相关指标、大规模网络中的链路预测、网络聚类分析、网络数据中的空间自回归模型、大规模网络数据中的模型估计方法、网络数据中的空间自回归模型的拓展及应用、网络中的空间自回归模型的其他研究方向等。本书关注大规模网络数据分析中的模型方法。除模型方法本身的理论拓展之外,在估计方法等方面会涉及大规模数据中的快速计算方法。由于网络分析本身的范围非常广泛,故本书涉及的内容仅局限于作者及团队研究工作中使用到的一部分。在本书的后,为了启发读者思路,对于部分已有网络研究进行了梳理。
本书的主要内容是作者及其合作者在复杂数据模型这一领域近些年的研究成果, 以及相关的最新进展. 全书共 6 章. 第 1 章简要介绍几类复杂数据模型和 bootstrap 等预备知识和相关研究问题. 第 2~6 章, 系统讨论各种复杂数据统计推断中的 bootstrap 基本理论、方法及其应用, 包括 Behrens-Fisher问题、异方差回归模型、异方差 ANOVA 和 MANOVA 模型、混合效应模型及高维数据分析中的 bootstrap 统计推断.
本书分为:绪论、智能风控的理论基础、基于大数据的智能风控系统技术架构、数据结构化表示与实时融合技术、知识工程及知识图谱技术应用、机器学习及人工智能在风控中的应用、规则引擎技术应用及优化、智能风控技术实战应用案例、总结与展望。 本书的目的是通过总结税收征管与风先甄别项目的实施经验,将项目的核心技术架构抽象为一个通用的智能风控系统解决方案,并对方案中用到的理论基础、具体技术、常见问题及解决办法等进行较为详细的说明,为其他行业开展风控系统建设提供有价值的借鉴。