《商业智能工具应用及数据可视化》一书聚焦商业智能与数据可视化主题,从概念、价值、方法、工具等理论基础出发,以实际场景为参考,分入门、进阶两大阶段,以帆软FineBI为例从商业智能工具的基本知识,商业应用场景,数据可视化优秀案例等方面,介绍了商业智能工具和各种常规和高级可视化图形的使用方法,重点介绍了商业智能工具FineBI的数据分析与可视化应用实践。本书内容层层递进,体系完善,可使读者对商业智能工具的运用有一个全面、系统、深入的了解。
本书是为广大数据分析师量身定制的入门读物,它旨在帮助读者站在大数据时代的制高点。数据分析处于统计学、计算机信息科学、运筹学、数据库等多个领域的交叉地带,大数据时代的到来大大丰富了数据分析的内涵,数据分析师的职责与以往相比发生了巨大的改变。本书全面介绍了经典数据分析、模式识别、机器学习、深度学习、数据挖掘、商务智能等多个领域的数据分析算法,将大数据时代的数据分析热点技术一网打尽。本书为每个数据分析算法都搭配了一个经典案例,并按照由易到难的原则构建知识框架,充分照顾了不同水平读者的阅读习惯。通过阅读本书,读者将对大数据时代下的数据分析有一个全面的认识。无论是入门级的数据分析员还是有一定基础的数据分析师,都能通过本书完善、加深对数据分析的认识。
本书是国内绝大多数高校采用的知名教材《云计算》(1-3版)的姊妹篇,是中国大数据专家委员会刘鹏教授联合国内多位专家历时两年的心血之作。大数据领域一直缺乏一本权威教材,希望本书能够填补空白。本书系统地介绍了大数据的理论知识和实战应用,包括大数据采集与预处理、数据挖掘算法和工具和大数据可视化等,并深度剖析了大数据在互联网、商业和典型行业的应用。刘鹏教授创办的网站中国大数据(thebigdata.cn)、中国云计算(chinacloud.cn)和微信公众号刘鹏看未来(lpoutlook)将免费提供本书配套PPT和其他资料。本书配套的大数据实验体系已经在郑州大学等高校成功应用。
本书介绍了数据挖掘的基本概念,包括数据挖掘的常用算法、常用工具、用途和应用场景及应用状况,讲述了常用数据挖掘方法,如分类、聚类、关联规则的概念、思想、典型算法、应用场景等。此外,本书还从实际应用出发,讲解了基于日志的大数据挖掘技术的原理、工具、应用场景和成功案例。日志挖掘技术现在已得到了广泛的运用。通过以上内容的学习,读者将了解数据挖掘的基本概念、思想和算法,并掌握其应用要领。本书可以作为培养应用型人才的课程教材,也可作为相关开发人员的自学教材和参考手册。
本书为安徽省重点研究与开发计划项目和安徽省高校领军骨干人才项目建设成果,按“业务流程建模-行为关系下的过程挖掘-过程模型隐变迁挖掘-过程模型优化”的顺序,详细介绍了业务流程的Petri网建模与分析方法、过程挖掘基本知识和分析技术、多类型行为关系下过程挖掘方法、多层次隐变迁挖掘方法及多视角过程模型优化方法。多视角和多层次的过程模型挖掘与优化,有利于丰富业务流程系统可信性研究,具有较好的理论意义和研究价值。 本书适合相关领域的研究人员阅读,也可供从事业务流程管理的决策制定者参考。