本书全面且深入地呈现了深度学习领域的知识体系,系统梳理了该领域的核心知识,阐述了深度学习的关键概念、基础理论及核心思想,剖析了当代深度学习架构与技术。全书共 20 章。本书首先介绍深度学习的发展历程、基本概念及其在诸多领域(如医疗诊断、图像合成等)产生的深远影响;继而深入探讨支撑深度学习的数学原理,包括概率、标准分布等;在网络模型方面,从单层网络逐步深入到多层网络、深度神经网络,详细讲解其结构、功能、优化方法及其在分类、回归等任务中的应用,同时涵盖卷积网络、Transformer 等前沿架构及其在计算机视觉、自然语言处理等领域的独特作用。本书还对正则化、采样、潜变量、生成对抗网络、自编码器、扩散模型等关键技术展开深入分析,阐释其原理、算法流程及实际应用场景。对于机器学习领域的新手,本书是全面且
本书全程图解式讲解,通过大量全彩插图拆解概念,让读者真正告别学习大模型的枯燥和复杂。 全书分为三部分,依次介绍语言模型的原理、应用及优化。第一部分 理解语言模型(第1~3章),解析语言模型的核心概念,包括词元、嵌入向量及Transformer架构,帮助读者建立基础认知。第二部分 使用预训练语言模型(第4~9章),介绍如何使用大模型进行文本分类、聚类、语义搜索、文本生成及多模态扩展,提升模型的应用能力。第三部分 训练和微调语言模型(第10~12章),探讨大模型的训练与微调方法,包括嵌入模型的构建、分类任务的优化及生成式模型的微调,以适应特定需求。 本书适合对大模型感兴趣的开发者、研究人员和行业从业者。读者无须深度学习基础,只要会用Python,就可以通过本书深入理解大模型的原理并上手大模型应用开发。书中示例还可以一
本书是《工程控制论》(第三版)的下册。这一册共九章。第十三章讨论摄动理论在控制系统设计中的应用,其中特别说明在飞行控制系统中的应用。第十四、十五两章介绍控制系统在随机干扰下的分析和设计。第十六、十八章讨论了适应性控制系统的设计。第十九章介绍了提高控制系统可靠性的各种方法。第十七、二十、二十一这三章分别是:逻辑控制和有限自动机(第十七章),信号与信息(第二十章),大系统(第二十一章)。这些方面已构成工程控制论这门学科的重要研究方向。书末还附有“有关中文著作目录选辑”,可供读者查阅。
本书主要围绕AI系统的理论基础与技术基础知识展开,结合实例进行介绍,旨在让读者了解AI系统的来龙去脉,形成对AI系统的系统化与层次化的初步理解,掌握AI系统基本理论、技术、实际应用及研究方向,为后续从事具体的学习研究工作和项目开发工作奠定基础。 本书首先介绍AI的历史、现状与发展及AI系统的基本知识,后分为AI硬件与体系结构、AI编译与计算架构、AI推理系统与引擎、AI框架核心模块四篇进行详细介绍,涉及AI系统从底层原理到应用落地的全貌,反映了AI系统架构的前沿技术。
《强化学习(第2版)》作为强化学习思想的深度解剖之作,被业内公认为是一本强化学习基础理论的经典著作。它从强化学习的基本思想出发,深入浅出又严谨细致地介绍了马尔可夫决策过程、蒙特卡洛方法、时序差分方法、同轨离轨策略等强化学习的基本概念和方法,并以大量的实例帮助读者理解强化学习的问题建模过程以及核心的算法细节。《强化学习(第2版)》适合所有对强化学习感兴趣的读者阅读、收藏。
传统材料研发模式主要基于实验“试错法”,其研发周期长、效率低,人工智能驱动的科研范式变革和新材料数字化研发模式能有效地降低研发成本,缩短研发周期。本书基于计算、数据、AI和实验“四位一体”的新材料集成式智能化研发理念,提出了基于材料基因编码的新材料智能设计范式,从企业级新材料研发和面向科研的材料计算视角,重点围绕高通量材料集成计算、多尺度材料计算模拟、材料数据库、材料数据机器学习、新材料研发制造软件等介绍了新材料数字化智能化研发和设计基本概念、方法、技术和应用。本书同时也介绍了国产的高通量多尺度集成式材料智能化设计工业软件MatCloud+,并通过一些精选案例介绍了材料计算、数据和新一代人工智能等数字化研发方法技术在新能源、金属/合金、石油化工、复合材料、新型功能材料等重点材料行业或领域的
本书从多学科交叉的角度将神经生物学在视觉神经机制、神经元信号加工与编码方面的解剖学与电生理学发现和认知心理学关于知觉信息加工、工作记忆等方面的实验结论,与人工智能中关于图像理解与人工神经元网络模型结合起来,设计能够模拟视网膜、初级视皮层和高级视皮层部分图像信息加工功能,以及模拟神经编码微回路的数据结构和层次网络计算模型,并用计算机视觉或图像理解领域常用的测试数据集来验证这些网络计算模型的效能。这些深入考虑了神经生物学基本机制与约束的计算模型,一方面能够在工程方面为图像理解或信息保持提供不同于传统方法的新解决方案,另一方面也为神经科学研究提供了探索神经信号加工内在机理的仿真平台。这些以信息加工神经生理机制和认知心理机制为基本出发点的计算建模研究为人工智能关于表征、神经计算新模型、基于
人工智能驱动的组学挖掘是数据驱动的生物医学研究的支撑技术。组学测序技术逐步向多尺度、跨模态、有扰动等方向发展,但体现出的高维度、高噪声、多模态、标记稀缺等特点,成为制约其有效挖掘的瓶颈。本书面向生命组学数据特点,较为系统和深入地对组学机器学习的主要研究范式、适用场景、分析方法、理论思想进行介绍。结合相应组学挖掘的具体研究案例,向读者展示组学人工智能驱动的生命健康交叉研究的绚烂图景。
本书不仅梳理了人工智能技术在科学各领域中的广泛应用,还深入分析了其对科学生产力的推动作用,以及在伦理、法律和社会层面可能引发的讨论和问题。书中汇集了国际专家的研究成果,为读者提供了一个全面了解人工智能在科学研究中应用的窗口,展现了人工智能技术如何推动科学的创新与进步,并对未来的研究方向提出了深刻的见解。
本书围绕自主无人系统发展背景、发展现状、技术挑战、伦理道德和政策法律等问题展开阐述。首先介绍了自主无人系统的相关概念、发展历程、发展现状和发展趋势;其次重点分析了自主无人系统涉及的关键技术,包括感知与认知、决策与规划、行动与控制、交互与协同、学习与进化等;然后分析了使用自主无人武器系统面临的伦理道德与政策法律问题,并介绍了主要国家的法律和相关政策;最后对自主无人系统的发展前景进行了展望,指出自主无人系统发展的最终目标是人机协同、人机共融和人机共生。
《人工智能算法在数值求解复杂系统中的应用》以较简明的方式介绍人工智能算法在数值求解复杂系统中的基本方法及*新进展。*先从人工智能与机器学习的基础算法开始讲解,包括*基础的反向传播神经网络模型和一些**的机器学习算法的基础及其原理。然后从一阶常微分方程初值问题引入,分别介绍常微分方程、偏微分方程以及积分微分方程数值求解的**算法。随后分别研究反向传播神经网络、极限学习机算法、*小二乘支持向量机算法以及深度学习算法如何用于数值求解复杂系统中的微分方程。相较于**的基于迭代算法的微分方程数值计算方法,这些基于人工智能与深度学习的计算方法可以更加高效且更加准确地得到复杂系统的数值解。
本书建立人工智能的信息的科学原理。全书有五部分。第Ⅰ部分,人工智能总论,提出信息世界的科学概念,以信息为支点建立科学体系的理论;第Ⅱ部分,信息基本定律,建立了信息世界的基本定义和基本定律;第Ⅲ部分,信息的数学原理,建立了以信息演算理论(离散系统的微积分)、信息解码原理和信息生成原理为三大支柱的信息科学体系的数学原理;第Ⅳ部分,智能的信息科学原理,建立了包括学习的信息理论、自我意识的信息理论、博弈/谋算理论为三大支柱的人工智能的信息科学原理,提出一个自我意识主体的智能就是该自我意识主体的信息的智能论题(intelligence thesis),提出人工智能的孙子模型;第Ⅴ部分,信息的哲学,提出信息时代科学双引擎的方法论和信息时代一些重大科学问题,简单介绍了《孙子兵法》的信息科学原理。
学科的范式 (科学观与方法论 )是指导学科研究的最高引领力量。然而作者发现:作为信息学科高级篇章的人工智能却遵循着物质学科的范式,使人工智能的研究严重受限。因此,本书实施了人工智能的范式革命:总结了信息学科的范式,以此取代物质学科范式对人工智能研究的统领地位;在信息学科范式的引领下,构筑人工智能的全局模型,揭示普适性智能生成机制,开辟机制主义的人工智能研究路径,重构人工智能的基本概念;发掘信息转换与智能创生定律,创建机制主义通用人工智能理论。后者不但可以融通现行人工智能三大学派,而且可以与人类智能的生成机制实现完美的统一,形成统一智能理论。
本书阐述高光谱遥感图像(可以简称为高光谱图像,也可以称为高光谱图像数据或高光谱数据)智能分类与检测的相关方法,主要内容包括高光谱遥感图像成像原理及特点,高光谱图像智能分类相关理论概述,基于机器学习、深度学习的高光谱图像分类,高光谱图像检测相关理论概述,以及高光谱图像特定目标、异常目标检测方法等内容。
本书以人工智能方法和生物组学数据分析为主线,阐述了人工智能中的群智能优化、机器学习、深度学习等算法的基本原理,并探讨了如何将这些算法应用于生物信息学相关问题的研究中,如蛋白质复合物挖掘、关键蛋白质识别、疾病基因预测、多种组学(转录组学、代谢组学、微生物组学)数据与疾病的关联关系预测、circRNA-RBP结合位点预测、RNA甲基化位点预测以及药物发现等。本书系统收集整理了生物组学相关数据库,另结合应用问题,从人工智能算法设计到具体流程计算,再到结果分析,均给出了详细步骤,以上均是本书的特色所在。
《人工智能对政府治理的挑战和应对》是一本*具特色的书籍,深入研究了现代政府治理与人工智能相互交织的前沿问题。《人工智能对政府治理的挑战和应对》将管理学、政治学、计算机科学及社会学等多个学科知识融合在一起,深刻剖析了政府治理在人工智能背景下的转型和创新。《人工智能对政府治理的挑战和应对》重点突出了政府治理理念、模式、结构和路径的变革,探讨了政府治理模式的演化规律,并提出了具有前瞻性的见解和建议。此外,《人工智能对政府治理的挑战和应对》还详细研究了大数据安全、社会伦理、政府监管等与人工智能相关的重要议题,为读者提供了深入了解和思考这些议题的机会。
本书系统介绍了知识图谱的概念、发展历程、技术体系、前沿技术与应用实践。在基础知识方面,本书囊括了知识图谱从源数据到产生决策的全生命周期的各个环节,分析了数据图谱和知识图谱的核心区别,介绍了图谱构建和知识表示等相关关键技术。在前沿技术方面,全面介绍了知识图谱自动构建、知识图谱融合和智能推理等问题和挑战。在应用实践方面,结合营销智能国家新一代人工智能开放创新平台建设,介绍了知识图谱在信息检索、推荐系统、可视化、问答机器人等场景下的实际操作案例。
本书主要针对智能喷涂机器人关键技术及应用,详细介绍了喷涂机器人动力学建模、运动精度与可靠性分析、主从示教、助力拖动示教、基于数字孪生的离线编程系统、轨迹规划及路径规划、多机协同喷涂及动态监控技术等内容,并阐述了智能喷涂机器人在家具、钢结构及迷彩喷涂等方面的典型应用,总结了柔性化喷涂生产线和智能喷涂共享中心的研究进展。
本书系统地论述了水下机器人设计与分析的基本原理、方法和技术,介绍了FLUENT、MATLAB/Simulink、ANSYS、ADAMS等现代设计分析软件在水下机器人设计中的应用,并以作者及研究团队的科研成果为主线,系统地阐述了水下机器人设计与分析方法。全书共十章,包括水下机器人结构及流线型设计、能源与动力、系统辨识方法、运动分析、底层控制系统、虚拟样机技术、路径规划与轨迹跟踪、仿生侧线感知及局域导航定位方法等方面的内容。
本书基于认知神经科学视角,在系统性梳理现有研究的基础上,从传统的电商网站到电商直播、虚拟现实、智能会话代理和机器人等新型平台,再到脑机接口这一人机交互的最高阶应用,对这些数智平台的用户行为及其背后的认知机制进行探讨,并对用户在这些平台上的信息安全和隐私决策行为进行了研究。本书遵循“平台特征?机体反应?用户行为”的路径对研究现状进行梳理并构建研究框架,厘清并解读用户在这些数智平台上的交互行为,并对未来将认知神经科学方法应用于信息系统和人机交互领域可能的研究空间和前景进行探讨。本书的特色在于其内容的前沿性、交叉性和体系性以及研究方法的创新性。
本书以空间机器人抓捕空间非合作目标为对象,详细介绍了抓捕前、抓捕中、抓捕后的相关理论与方法,内容包括:抓捕前的非合作目标的智能识别、运动观测、运动预测、近距离交会、姿态演化、主动消旋等,抓捕中的空间机器人无扰路径规划控制技术及几种抓捕策略,抓捕后的非合作目标惯性参数辨识技术、卫星组合体消旋及姿态快速稳定控制技术。另外还详细介绍了空间机器人关节柔性及摩擦建模、容错控制、追逃博弈等。本书内容是作者多年来在空间机器人技术方面的研究成果汇总,具有系统性和新颖性。