筛选条件:

  • 1星以上
  • 100~元以上
清空筛选条件
顾客评分:
仅五星 以上 以上 以上 以上
销售价格:
1-10元10-30元30-50元50-100元100~元以上
折扣力度:
6折-6.9折
筛选:
    • 深度学习:基础与概念
    •   ( 227 条评论 )
    • [英]克里斯托弗 · M. 毕晓普Christopher M. Bishop) /2025-05-01/ 人民邮电出版社
    • 本书全面且深入地呈现了深度学习领域的知识体系,系统梳理了该领域的核心知识,阐述了深度学习的关键概念、基础理论及核心思想,剖析了当代深度学习架构与技术。全书共 20 章。本书首先介绍深度学习的发展历程、基本概念及其在诸多领域(如医疗诊断、图像合成等)产生的深远影响;继而深入探讨支撑深度学习的数学原理,包括概率、标准分布等;在网络模型方面,从单层网络逐步深入到多层网络、深度神经网络,详细讲解其结构、功能、优化方法及其在分类、回归等任务中的应用,同时涵盖卷积网络、Transformer 等前沿架构及其在计算机视觉、自然语言处理等领域的独特作用。本书还对正则化、采样、潜变量、生成对抗网络、自编码器、扩散模型等关键技术展开深入分析,阐释其原理、算法流程及实际应用场景。对于机器学习领域的新手,本书是全面且

    • ¥129.8 ¥188 折扣:6.9折
    • 强化学习(第2版)
    •   ( 3849 条评论 )
    • (加)Richard S. Sutton理查德·桑顿),(美)Andrew G. Barto安德鲁·巴图) /2019-09-01/ 电子工业出版社
    • 《强化学习(第2版)》作为强化学习思想的深度解剖之作,被业内公认为是一本强化学习基础理论的经典著作。它从强化学习的基本思想出发,深入浅出又严谨细致地介绍了马尔可夫决策过程、蒙特卡洛方法、时序差分方法、同轨离轨策略等强化学习的基本概念和方法,并以大量的实例帮助读者理解强化学习的问题建模过程以及核心的算法细节。《强化学习(第2版)》适合所有对强化学习感兴趣的读者阅读、收藏。

    • ¥104.2 ¥168 折扣:6.2折
    • 人工智能在生物信息学中的应用雷秀娟9787030765482科学出版社
    •   ( 101 条评论 )
    • 雷秀娟,潘毅 /2024-04-01/ 科学出版社
    • 本书以人工智能方法和生物组学数据分析为主线,阐述了人工智能中的群智能优化、机器学习、深度学习等算法的基本原理,并探讨了如何将这些算法应用于生物信息学相关问题的研究中,如蛋白质复合物挖掘、关键蛋白质识别、疾病基因预测、多种组学(转录组学、代谢组学、微生物组学)数据与疾病的关联关系预测、circRNA-RBP结合位点预测、RNA甲基化位点预测以及药物发现等。本书系统收集整理了生物组学相关数据库,另结合应用问题,从人工智能算法设计到具体流程计算,再到结果分析,均给出了详细步骤,以上均是本书的特色所在。

    • ¥122.8 ¥198 折扣:6.2折
    • 知识图谱 吴信东 白婷等著
    •   ( 49 条评论 )
    • 吴信东白婷张杰吴斌吴明辉 /2023-12-01/ 科学出版社
    • 本书系统介绍了知识图谱的概念、发展历程、技术体系、前沿技术与应用实践。在基础知识方面,本书囊括了知识图谱从源数据到产生决策的全生命周期的各个环节,分析了数据图谱和知识图谱的核心区别,介绍了图谱构建和知识表示等相关关键技术。在前沿技术方面,全面介绍了知识图谱自动构建、知识图谱融合和智能推理等问题和挑战。在应用实践方面,结合营销智能国家新一代人工智能开放创新平台建设,介绍了知识图谱在信息检索、推荐系统、可视化、问答机器人等场景下的实际操作案例。

    • ¥104.2 ¥168 折扣:6.2折
    • 数据智能研究前沿
    •   ( 54 条评论 )
    • 徐宗本姚新 /2019-12-01/ 上海交通大学出版社
    • 数据智能是以数据为中心、以 感知用 为模式的人工智能,也可以说是以数据获取、加工、处理、分析、应用为智能特征的人工智能。数据智能包括智能感知、智能认知(机器学习)、智能控制/ 智能决策等方面,是近代人工智能研究为活跃、应用为普遍的部分。本分册主要从深度生成模型、生成式对抗网络、模型驱动深度学习、自步课程学习、强化学习、迁移学习及演化智能方面进行阐述,涵盖标准算法及精选的应用案例,总结了近年来数据智能研究的发展与成果。

    • ¥116.6 ¥188 折扣:6.2折
    • 深度学习(上)
    •   ( 118 条评论 )
    • 张宪超 /2025-01-01/ 科学出版社
    • 本书对所有主要的深度学习方法和最新研究趋势进行了深入探索。全书分为上下两卷,五个部分。上卷包括两个部分:第一部分是基础算法,包括机器学习基础算法、早期神经网络算法、深度学习的正则化方法和深度学习的优化方法;第二部分是判别式模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆模型(LSTM)、注意力机制和记忆网络。下卷包括三个部分:第三部分是生成式模型,包括深度置信网络/深度玻尔兹曼机、自编码器(AE)/变分自编码器(VAE)、生成对抗网络(GAN)、像素级生成、深度聚类等;第四部分是前沿技术,讨论深度强化学习;第五部分是安全保障,包括深度学习的可解释性和对抗样本的攻击与防御。本书特别注重学术前沿,对包括胶囊网络在内的当前最新成果进行了细致的讨论。全书构建了一套明晰的深度学习体系,同时

    • ¥109.2 ¥168 折扣:6.5折
    • 深度学习(下)
    •   ( 116 条评论 )
    • 张宪超 /2023-12-01/ 科学出版社
    • 本书对所有主要的深度学习方法和**研究趋势进行了深入探索。全书分为上下两卷,五个部分。上卷包括两个部分:第一部分是基础算法,包括机器学习基础算法、早期神经网络算法、深度学习的正则化方法和深度学习的优化方法;第二部分是判别式模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆模型(LSTM)、注意力机制和记忆网络。下卷包括三个部分:第三部分是生成式模型,包括深度置信网络/深度玻尔兹曼机、自编码器(AE)/变分自编码器(VAE)、生成对抗网络(GAN)、像素级生成、深度聚类等;第四部分是前沿技术,讨论深度强化学习;第五部分是安全保障,包括深度学习的可解释性和对抗样本的攻击与防御。本书特别注重学术前沿,对包括胶囊网络在内的当前**成果进行了细致的讨论。全书构建了一套明晰的深度学习体系,同时各章内

    • ¥109.2 ¥168 折扣:6.5折
    • 高级人工智能(第三版)
    •   ( 211 条评论 )
    • 史忠植 /2023-06-01/ 科学出版社
    • 人工智能是研究解释和模拟人类智能、智能行为及其规律的一门学科,建立智能信息处理理论,研制智能机器和智能系统,延伸和扩展人类智能。《BR》本书共16章。第1~6章讨论人工智能的认知问题和自动推理,论述逻辑基础、约束推理、定性推理、基于案例的推理、概率推理;第7~14章重点讨论机器学习和知识发现,包括归纳学习、支持向量机、解释学习、强化学习、无监督学习、关联规则、进化计算、知识发现;第15章阐述主体计算;第16章讨论互联网智能。与本书第二版相比,增加了两章新内容。其他章节也作了较大的修改和补充。

    • ¥128.7 ¥198 折扣:6.5折
广告