Josh Starmer博士在YouTube的账号 StatQuest 视频总观看量突破7000万次(2024年11月统计的数据),他帮助全世界各行各业的人赢得数据科学竞赛、通过考试、顺利毕业、成功求职或实现晋升,因此被大家誉为 硅谷的守护神 。他那独特的图文表达形式和幽默的语言风格深受观众喜爱,这本《StatQuest图解机器学习》结合了他创新的视觉呈现方式,深入浅出地阐释了机器学习的基础和高阶知识,是一本轻松理解机器学习的 漫画书 。本书前3章着重介绍了机器学习的整体框架和核心思想,自第4四章起,逐一探讨了各种机器学习算法:从基础的线性回归(第4章)和逻辑回归(第6章)到朴素贝叶斯(第7章)和决策树(第10章),最后介绍了支持向量机(第11章)和神经网络(第12章)。随着读者学习的深入,第5章、第8章和第9章分别介绍了机器学习的进阶知识和实用技巧,如梯度下
本书系统地讲解了大模型技术、训练算法(包括强化学习、RLHF、GRPO、DPO、SFT与CoT蒸馏等)、 微调与对齐、效果优化及其实践。全书以大语言模型(LLM)为主线,绝大部分内容也适用于多模态大模型(VLM 和MLLM)。本书面向AI算法与工程领域的从业者、相关专业的学生,以及希望深入了解大模型技术、拥抱AI与大模型浪潮的跨行业读者。
本书是《工程控制论》(第三版)的下册。这一册共九章。第十三章讨论摄动理论在控制系统设计中的应用,其中特别说明在飞行控制系统中的应用。第十四、十五两章介绍控制系统在随机干扰下的分析和设计。第十六、十八章讨论了适应性控制系统的设计。第十九章介绍了提高控制系统可靠性的各种方法。第十七、二十、二十一这三章分别是:逻辑控制和有限自动机(第十七章),信号与信息(第二十章),大系统(第二十一章)。这些方面已构成工程控制论这门学科的重要研究方向。书末还附有“有关中文著作目录选辑”,可供读者查阅。
本书在状态空间理论的统一框架下系统深人地介绍了预测控制的滚动优化原理、算法和闭环性能。首先通过本科生熟悉的状态空间模型建立起预测控制从原理到算法和性能分析的每一个细节。然后,介绍了阶跃响应模型和脉冲响应模型的状态空间描述,给出了与传统卷积描述的一致性。据此,遵循预测控制的三个步骤“预测系统未来动态-求解优化问题-解的第一个元素作用于系统”和“滚动时域、重复进行”机制推导了无约束的动态矩阵控制(DMC)和模型算法控制(MAC),分析了闭环性能,给出了闭环稳定性的分离原理。然后,依次讨论了时滞预测控制、约束预测控制、非线性预测控制,以及稳定性和鲁棒性研究的最新进展。最后,介绍了基于滚动优化原理的滚动时域估计和基于现场可编程门阵列(FPGA)的预测控制器实现技术。
内容简介本书是AI时代法律人和法律机构的生存指南,它从业务角度全面总结了法律人如何使用AI提升工作效率,以及律所等机构如何使用AI提升运营效率;它从技术角度详细讲解了如何构建法律行业的垂直大模型、知识库和智能体。它由中国领先的法律科技企业新橙科技(iCourt)官方出品,是iCourt的CEO带领团队核心成员总结的iCourt在AI领域的理论研究成果和实战经验。全书内容分为五个部分:第一部分(第1章) AI带来的影响与应对措施从法律人的视角介绍了AI大模型的基础知识,以及AI在法律领域的应用趋势和场景。从宏观角度深入探讨AI对法律行业带来的积极影响和消极影响。最后部分为法律行业从业者和法律机构应对 AI 带来的变革提供相应策略。第二部分(第2~6章)AI 助力法律人提升工作效率围绕类案检索、案情分析、法律咨询、法律文书写作、合同审查等法
传统材料研发模式主要基于实验“试错法”,其研发周期长、效率低,人工智能驱动的科研范式变革和新材料数字化研发模式能有效地降低研发成本,缩短研发周期。本书基于计算、数据、AI和实验“四位一体”的新材料集成式智能化研发理念,提出了基于材料基因编码的新材料智能设计范式,从企业级新材料研发和面向科研的材料计算视角,重点围绕高通量材料集成计算、多尺度材料计算模拟、材料数据库、材料数据机器学习、新材料研发制造软件等介绍了新材料数字化智能化研发和设计基本概念、方法、技术和应用。本书同时也介绍了国产的高通量多尺度集成式材料智能化设计工业软件MatCloud+,并通过一些精选案例介绍了材料计算、数据和新一代人工智能等数字化研发方法技术在新能源、金属/合金、石油化工、复合材料、新型功能材料等重点材料行业或领域的
机器学习是计算机科学的重要分支领域.本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面.全书共16章,大致分为3个部分:第1部分(第1~3章)介绍机器学习的基础知识;第2部分(第4~10章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3部分(第11~16章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等.每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索.本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考.
本书力求用兼具浅白和学术的语言介绍量子张量网络中的抽象概念,包括量子、叠加、纠缠、测量、量子概率、三种著名的量子算法——Shor算法、Grover算法和HHL算法、张量、张量分解、四种典型张量网络态、TEBD算法、密度矩阵重整化群等,进而揭开这些概念自身本质和概念之间关系的面纱, 内容涉及量子力学基本概念、三种著名的量子算法、张量基础、张量网络与量子多体物理系统、量子多体系统的张量网络态算法和基于张量网络的量子机器学习。本书在内容编排上主要是通过数学方式对量子张量网络机器学习进行阐述, 而不会在物理学上对它们进行过多的精确解释,为张量网络机器学习提供捷径。
智能决策是迈向通用人工智能的必经之路。2016年,围棋智能体AlphaGo战胜韩国棋手李世石,智能决策引起人们的广泛关注;2022年底,ChatGPT火爆全球,凸显出大模型的价值。可以预见,神经网络大模型将进一步推动智能决策在自主学习和应用范围上的突破。本书围绕智能决策领域涉及的基本方法与技术展开介绍,主要内容包括:智能决策与智能体的基本概念,智能体所处环境的分类与建模,确定环境下智能体的搜索推理决策方法,不确定环境下决策策略强化学习方法、博弈学习方法,复杂策略的深层神经网络建模与应用,以及网格世界游戏、“雅达利”游戏、围棋对弈、“星际争霸”即时战略对抗游戏、陆战对抗等实例下智能体的决策策略生成技术和部分Python代码实现。
本书围绕自主无人系统发展背景、发展现状、技术挑战、伦理道德和政策法律等问题展开阐述。首先介绍了自主无人系统的相关概念、发展历程、发展现状和发展趋势;其次重点分析了自主无人系统涉及的关键技术,包括感知与认知、决策与规划、行动与控制、交互与协同、学习与进化等;然后分析了使用自主无人武器系统面临的伦理道德与政策法律问题,并介绍了主要国家的法律和相关政策;最后对自主无人系统的发展前景进行了展望,指出自主无人系统发展的最终目标是人机协同、人机共融和人机共生。
大脑如何产生新想法?思维如何产生,又是如何运作的?意识缘何形成?什么是情感、感觉、想法?如果将人类大脑看成一台机器,那么这是否有益于我们设计出能够像人一样能理解、会思考的高级人工智能 情感机器? 情感是人类特有的一种思维方式,如果机器具备了情感,是不是就可以取代人类? 在《情感机器》中,人工智能之父马文 明斯基有力地论证了:情感、直觉和情绪并不是与众不同的东西,而只是一种人类特有的思维方式。也同时揭示了为什么人类思维有时需要理性推理,而有时又会转向情感的奥秘。通过对人类思维方式建模,他为我们剖析了人类思维的本质,为大众提供了一幅创建能理解、会思考、具备人类意识、常识性思考能力,乃至自我观念的情感机器的路线图。
《人工智能算法在数值求解复杂系统中的应用》以较简明的方式介绍人工智能算法在数值求解复杂系统中的基本方法及*新进展。*先从人工智能与机器学习的基础算法开始讲解,包括*基础的反向传播神经网络模型和一些**的机器学习算法的基础及其原理。然后从一阶常微分方程初值问题引入,分别介绍常微分方程、偏微分方程以及积分微分方程数值求解的**算法。随后分别研究反向传播神经网络、极限学习机算法、*小二乘支持向量机算法以及深度学习算法如何用于数值求解复杂系统中的微分方程。相较于**的基于迭代算法的微分方程数值计算方法,这些基于人工智能与深度学习的计算方法可以更加高效且更加准确地得到复杂系统的数值解。
使用机器学习技术解决实际应用问题涉及模型的建立、训练及评估等步骤。优化算法常被用于训练模型的参数,是机器学习的重要组成部分。机器学习模型的训练可以建模成无约束优化问题或带约束优化问题,约束可以为模型增加更多的先验知识。基于梯度的算法(例如加速梯度法、随机梯度法等)是求解无约束优化问题的常用方法,而交替方向乘子法(ADMM)则是求解带约束优化问题的有力工具。《BR》本书概述了机器学习中ADMM的新进展。书中全面介绍了各种情形下的ADMM,包括确定性和随机性的算法、集中式和分布式的算法,以及求解凸问题和非凸问题的算法,深入介绍了各个算法的核心思想,并为算法的收敛性和收敛速度提供了详细的证明。
人工智能驱动的组学挖掘是数据驱动的生物医学研究的支撑技术。组学测序技术逐步向多尺度、跨模态、有扰动等方向发展,但体现出的高维度、高噪声、多模态、标记稀缺等特点,成为制约其有效挖掘的瓶颈。本书面向生命组学数据特点,较为系统和深入地对组学机器学习的主要研究范式、适用场景、分析方法、理论思想进行介绍。结合相应组学挖掘的具体研究案例,向读者展示组学人工智能驱动的生命健康交叉研究的绚烂图景。
本书聚焦食品科学技术未来发展需求,将机器学习算法与食品科学技术紧密融合。以Python作为主要编程语言,依托NumPy、Matplotlib和Pandas等数据库,详细介绍卷积神经网络、朴素贝叶斯、人工神经网络、随机森林、决策树、线性回归、K最近邻等核心算法。同时,以茶叶、水产品、食用菌、咖啡、挂面、魔芋葡甘聚糖水凝胶、预制菜等多个食品创新产业为例,全面系统地介绍了机器学习算法在食品科学领域的应用进展,为机器学习算法在食品科学研究领域的进一步发展提供了理论依据和技术支撑。
本书旨在成为大模型在各行各业落地应用的 百科全书 ,专为对大模型感兴趣的从业者和企业管理者量身打造。本书结合了实地调研和多元视角,不仅对大模型进行了技术分析,还从商业、产品、行业等多个角度进行了应用探讨。全书共5章:第 1 章介绍了大模型的训练过程和核心技术;第 2 章分析了大模型对软件行业的影响,通过具体案例展示了软件公司如何适应大模型需求;第 3、4 章分别从产品和行业角度出发,讨论了大模型如何改变产品升级流程和工作流程,以及它对各行各业的具体影响;第 5 章展望了大模型的未来,预测了它将如何改变我们的世界。本书由互联网企业的大模型产品经理、公有云服务的战略规划专家、活跃于中美两国的大模型投资者和从业者,以及专注于行业应用的大模型创业公司共同参与创作。本书将为从业者提供如何选择合适的大模型
机器学习实战 基于Python SKlearn的解析 本书前6章介绍基础准备、数据探索、数据预处理、机器学习模型(分类、回归、聚类)、集成学习、模型评估及持久化;第7章介绍机器学习在土木工程中的应用场景,并以五个工程案例系统化讲解SKlearn库的应用。 本书 轻原理、重实践 ,适合广大对机器学习有兴趣,并且想系统学习数理统计的读者;也可用作机器学习培训、高校教材或作为学习SKlearn库的工具书。
l 《人人都应该知道的人工智能》是斯坦福大学教授杰瑞 卡普兰继其畅销书《人工智能时代》之后的又一部重磅新作,详尽地探讨了人工智能的发展和当下面临的迫切问题。 机器在智能和体能方面的进展正在改变我们生活、工作、娱乐、寻找伴侣、教育子女,甚至照顾老人的方式,它还在颠覆我们的劳动力市场,对社会秩序进行重新洗牌,接下来的几十年里,人工智能还会肆意拉扯我们的社会结构直至被打破,未来会像《星际迷航》中那样空前繁荣与自由,还是会像《终结者》中那样爆发人与机器之间无尽的战争?《人人都应该知道的人工智能》有你想知道的一切答案。
本书主要针对智能喷涂机器人关键技术及应用,详细介绍了喷涂机器人动力学建模、运动精度与可靠性分析、主从示教、助力拖动示教、基于数字孪生的离线编程系统、轨迹规划及路径规划、多机协同喷涂及动态监控技术等内容,并阐述了智能喷涂机器人在家具、钢结构及迷彩喷涂等方面的典型应用,总结了柔性化喷涂生产线和智能喷涂共享中心的研究进展。