Josh Starmer博士在YouTube的账号 StatQuest 视频总观看量突破7000万次(2024年11月统计的数据),他帮助全世界各行各业的人赢得数据科学竞赛、通过考试、顺利毕业、成功求职或实现晋升,因此被大家誉为 硅谷的守护神 。他那独特的图文表达形式和幽默的语言风格深受观众喜爱,这本《StatQuest图解机器学习》结合了他创新的视觉呈现方式,深入浅出地阐释了机器学习的基础和高阶知识,是一本轻松理解机器学习的 漫画书 。本书前3章着重介绍了机器学习的整体框架和核心思想,自第4四章起,逐一探讨了各种机器学习算法:从基础的线性回归(第4章)和逻辑回归(第6章)到朴素贝叶斯(第7章)和决策树(第10章),最后介绍了支持向量机(第11章)和神经网络(第12章)。随着读者学习的深入,第5章、第8章和第9章分别介绍了机器学习的进阶知识和实用技巧,如梯度下
本书系统地讲解了大模型技术、训练算法(包括强化学习、RLHF、GRPO、DPO、SFT与CoT蒸馏等)、 微调与对齐、效果优化及其实践。全书以大语言模型(LLM)为主线,绝大部分内容也适用于多模态大模型(VLM 和MLLM)。本书面向AI算法与工程领域的从业者、相关专业的学生,以及希望深入了解大模型技术、拥抱AI与大模型浪潮的跨行业读者。
本书在状态空间理论的统一框架下系统深人地介绍了预测控制的滚动优化原理、算法和闭环性能。首先通过本科生熟悉的状态空间模型建立起预测控制从原理到算法和性能分析的每一个细节。然后,介绍了阶跃响应模型和脉冲响应模型的状态空间描述,给出了与传统卷积描述的一致性。据此,遵循预测控制的三个步骤“预测系统未来动态-求解优化问题-解的第一个元素作用于系统”和“滚动时域、重复进行”机制推导了无约束的动态矩阵控制(DMC)和模型算法控制(MAC),分析了闭环性能,给出了闭环稳定性的分离原理。然后,依次讨论了时滞预测控制、约束预测控制、非线性预测控制,以及稳定性和鲁棒性研究的最新进展。最后,介绍了基于滚动优化原理的滚动时域估计和基于现场可编程门阵列(FPGA)的预测控制器实现技术。
内容简介本书是AI时代法律人和法律机构的生存指南,它从业务角度全面总结了法律人如何使用AI提升工作效率,以及律所等机构如何使用AI提升运营效率;它从技术角度详细讲解了如何构建法律行业的垂直大模型、知识库和智能体。它由中国领先的法律科技企业新橙科技(iCourt)官方出品,是iCourt的CEO带领团队核心成员总结的iCourt在AI领域的理论研究成果和实战经验。全书内容分为五个部分:第一部分(第1章) AI带来的影响与应对措施从法律人的视角介绍了AI大模型的基础知识,以及AI在法律领域的应用趋势和场景。从宏观角度深入探讨AI对法律行业带来的积极影响和消极影响。最后部分为法律行业从业者和法律机构应对 AI 带来的变革提供相应策略。第二部分(第2~6章)AI 助力法律人提升工作效率围绕类案检索、案情分析、法律咨询、法律文书写作、合同审查等法
机器学习是计算机科学的重要分支领域.本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面.全书共16章,大致分为3个部分:第1部分(第1~3章)介绍机器学习的基础知识;第2部分(第4~10章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3部分(第11~16章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等.每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索.本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考.
本书力求用兼具浅白和学术的语言介绍量子张量网络中的抽象概念,包括量子、叠加、纠缠、测量、量子概率、三种著名的量子算法——Shor算法、Grover算法和HHL算法、张量、张量分解、四种典型张量网络态、TEBD算法、密度矩阵重整化群等,进而揭开这些概念自身本质和概念之间关系的面纱, 内容涉及量子力学基本概念、三种著名的量子算法、张量基础、张量网络与量子多体物理系统、量子多体系统的张量网络态算法和基于张量网络的量子机器学习。本书在内容编排上主要是通过数学方式对量子张量网络机器学习进行阐述, 而不会在物理学上对它们进行过多的精确解释,为张量网络机器学习提供捷径。
智能决策是迈向通用人工智能的必经之路。2016年,围棋智能体AlphaGo战胜韩国棋手李世石,智能决策引起人们的广泛关注;2022年底,ChatGPT火爆全球,凸显出大模型的价值。可以预见,神经网络大模型将进一步推动智能决策在自主学习和应用范围上的突破。本书围绕智能决策领域涉及的基本方法与技术展开介绍,主要内容包括:智能决策与智能体的基本概念,智能体所处环境的分类与建模,确定环境下智能体的搜索推理决策方法,不确定环境下决策策略强化学习方法、博弈学习方法,复杂策略的深层神经网络建模与应用,以及网格世界游戏、“雅达利”游戏、围棋对弈、“星际争霸”即时战略对抗游戏、陆战对抗等实例下智能体的决策策略生成技术和部分Python代码实现。
大脑如何产生新想法?思维如何产生,又是如何运作的?意识缘何形成?什么是情感、感觉、想法?如果将人类大脑看成一台机器,那么这是否有益于我们设计出能够像人一样能理解、会思考的高级人工智能 情感机器? 情感是人类特有的一种思维方式,如果机器具备了情感,是不是就可以取代人类? 在《情感机器》中,人工智能之父马文 明斯基有力地论证了:情感、直觉和情绪并不是与众不同的东西,而只是一种人类特有的思维方式。也同时揭示了为什么人类思维有时需要理性推理,而有时又会转向情感的奥秘。通过对人类思维方式建模,他为我们剖析了人类思维的本质,为大众提供了一幅创建能理解、会思考、具备人类意识、常识性思考能力,乃至自我观念的情感机器的路线图。
使用机器学习技术解决实际应用问题涉及模型的建立、训练及评估等步骤。优化算法常被用于训练模型的参数,是机器学习的重要组成部分。机器学习模型的训练可以建模成无约束优化问题或带约束优化问题,约束可以为模型增加更多的先验知识。基于梯度的算法(例如加速梯度法、随机梯度法等)是求解无约束优化问题的常用方法,而交替方向乘子法(ADMM)则是求解带约束优化问题的有力工具。《BR》本书概述了机器学习中ADMM的新进展。书中全面介绍了各种情形下的ADMM,包括确定性和随机性的算法、集中式和分布式的算法,以及求解凸问题和非凸问题的算法,深入介绍了各个算法的核心思想,并为算法的收敛性和收敛速度提供了详细的证明。
本书聚焦食品科学技术未来发展需求,将机器学习算法与食品科学技术紧密融合。以Python作为主要编程语言,依托NumPy、Matplotlib和Pandas等数据库,详细介绍卷积神经网络、朴素贝叶斯、人工神经网络、随机森林、决策树、线性回归、K最近邻等核心算法。同时,以茶叶、水产品、食用菌、咖啡、挂面、魔芋葡甘聚糖水凝胶、预制菜等多个食品创新产业为例,全面系统地介绍了机器学习算法在食品科学领域的应用进展,为机器学习算法在食品科学研究领域的进一步发展提供了理论依据和技术支撑。
本书旨在成为大模型在各行各业落地应用的 百科全书 ,专为对大模型感兴趣的从业者和企业管理者量身打造。本书结合了实地调研和多元视角,不仅对大模型进行了技术分析,还从商业、产品、行业等多个角度进行了应用探讨。全书共5章:第 1 章介绍了大模型的训练过程和核心技术;第 2 章分析了大模型对软件行业的影响,通过具体案例展示了软件公司如何适应大模型需求;第 3、4 章分别从产品和行业角度出发,讨论了大模型如何改变产品升级流程和工作流程,以及它对各行各业的具体影响;第 5 章展望了大模型的未来,预测了它将如何改变我们的世界。本书由互联网企业的大模型产品经理、公有云服务的战略规划专家、活跃于中美两国的大模型投资者和从业者,以及专注于行业应用的大模型创业公司共同参与创作。本书将为从业者提供如何选择合适的大模型
机器学习实战 基于Python SKlearn的解析 本书前6章介绍基础准备、数据探索、数据预处理、机器学习模型(分类、回归、聚类)、集成学习、模型评估及持久化;第7章介绍机器学习在土木工程中的应用场景,并以五个工程案例系统化讲解SKlearn库的应用。 本书 轻原理、重实践 ,适合广大对机器学习有兴趣,并且想系统学习数理统计的读者;也可用作机器学习培训、高校教材或作为学习SKlearn库的工具书。
我们正经历一场前所未有的智能跃迁。人工智能带来的,远不止于技术革新,更是一场深刻重塑人类认知、教育与生存方式的范式转移。这场跃迁的关键,不在于技术会走多远,而在于——人类如何重新认识自我。当知识不再稀
本书旨在系统介绍人工智能与机器人研究领域的相关基础理论,同时展示国内外最新的研究成果,全书分为人工智能基础与智能机器人两大部分,共17章。第一部分主要介绍人工智能的基本概念、知识工程、确定性推理、不确定性推理、搜索技术、人工神经网络、机器学习、进化计算与群体智能、分布式人工智能等内容。第二部分主要介绍智能机器人的定义和研究领域、机器人感知、机器人定位与建图、机器人导航、机器人路径规划、多机器人系统、生物启发式方法在机器人中的应用、智能机器人设计与开发等内容。
本书主要是作者在脑-机接口(brain-computerinterface,BCI)或脑-机器人交互(brain-robotinteraction,BRI)方面的多年研究成果。该书详细地介绍BRI系统常用的脑信号产生机理和应用方法,全面地阐述以Cerobot为基本框架的非“侵入”式BRI系统结构,其中包括信号采集与处理、软件接口与混合编程、硬件设计与搭建等,并针对不同的脑电模式和机器人提供丰富的大脑与机器人交互的案例。
如何更好地将自然人机交互技术应用到具体领域是目前的热点研究问题。本书对人机交互技术及应用进行较为全面的介绍,内容包括:人机交互技术发展历史与研究方法,人机交互系统的评估方法,自然人机交互关键技术,即多点触控技术、手势交互技术、人体动作识别技术、裸眼3D技术、移动增强现实技术,以及人机交互在数据可视化中的应用。本书的主要内容源于作者的研究工作,部分内容取材于参考文献。