内容简介 近世代数是代数学的一个基础学科,讲述代数基本结构的特性.本书除系统介绍群、环和域的基础知识(包括域的有限伽罗瓦扩张理论)之外,还力图强调近世代数中的思想和方法.书中有大量习题.除主线内容之外,还增加一些附录用来开拓和深化所学内容.本书在中国科学技术大学讲授多年的讲义基础上修改写成,可作为高等学校数学系基础课教材,也可供数学工作者和通信、计算机科学等领域的工程技术人员参考.
胡里克编著的《初等代数几何(第2版)》是代数几何的一个导引,其目的是给出代数几何的基本概念和方法,并用大量例题对它们进行解释,这可以让读者在一些补充资料的帮助下独立进行工作。《初等代数几何(第2版)》特意保持使用初等语言。书中一方面展开一般理论,另一方面则处理具体的例题和应用,并着重于这两者之间的相互作用和联系。 《初等代数几何(第2版)》适合大学数学系的本科生阅读参考,他们已经学过了代数和函数论的基础课程。《初等代数几何(第2版)》的新版做了重大修改,增添了许多新图和习题,所有习题都有解题提示。
本书系统介绍了线性代数与解析几何的基本理论和方法,主要内容包括行列式、矩阵、空问解析几何与向量运算、n维向量、线性方程组、矩阵相似对角化、二次型、MATLAB简述与应用。本书注重代数与几何的有机结合,强调矩阵初等变换的作用,将数学建模思想融人教材,注重应用背景及实例的介绍,并精选了大量的例题和习题,便于学生自学。
本书是根据高等教育本科线性代数课程的教学基本要求编写而成的.主要内容有:n阶行列式、矩阵与向量、矩阵的运算、线性方程组、相似矩阵与二次型、线性空间与线性变换、矩阵理论与方法的应用. 书后附有部分习题参考答案. 书末的附录中选编了2010~2015年全国硕士研究生入学考试线性代数的部分试题.
《线性代数(第2版新时期大学数学信息化精品教材)》编著者张军好、余启港、欧阳露莎。 《线性代数(第2版新时期大学数学信息化精品教材)》是按新时期大学数学教学大纲编写,内容丰富、理论严谨、思路清晰、例题典型、方法性强,注重分析解题思路与规律,对培养和提高学生的学习兴趣以及分析问题和解决问题的能力将起到较大的作用。全书共分6章,内容涵盖了行列式、矩阵及其运算、向量组的线性相关性、线性方程组解的结构、方阵的特征值与特征向量、二次型等。 本书可以作为高等院校非数学专业的“线性代数”教材,也可供自学者、科技工作者、考研学生等阅读参考。
抽象代数I是南开大学数学专业的必修课,抽象代数II是该专业本科生的选修课和研究生的必修课,结合代数是应用 广泛的一种代数结构,将这些内容作为该课程的内容是 合适的。本书是作者在长期教授该课程的基础上编写而成,内容包括结合代数,张量积、张量代数,二次型、Clifford代数,群代数及其表示,某些非结合代数。《BR》本书力求深入浅出,循序渐进,特别注意与其他课程的联系,以使读者体会到“抽象代数是制造机器的机器”这一 论述, 能体会到“玄之又玄,众妙之门”这样的哲理。
本书共二十八章,是论述多项式方程求解过程及数域上的伽罗瓦理论的一本入门读物。 本书按历史发展从解一元一次方程谈起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解案,从而自然地引出了群、域,以及域的扩张等概念。由此,本书在讨论了集合论后,用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,同时又引导读者一步步地去解决一系列 的古典难题,如尺规作图问题、三次实系数不可约方程的“不可简化情况”,以及伽罗瓦的根式可解判别定理等。 本书还有四个附录:附录1讨论了复数的指数形式表示与三角形式表示之间的一个联系——棣莫弗公式;附录2证明了联系两个正整数及其 公因数的贝祖等式;附录3给出了计算三次方程的判别式D的方法与结果;附录4详细地论
本书共二十八章,是论述多项式方程求解过程及数域上的伽罗瓦理论的一本入门读物。 本书按历史发展从解一元一次方程谈起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解案,从而自然地引出了群、域,以及域的扩张等概念。由此,本书在讨论了集合论后,用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,同时又引导读者一步步地去解决一系列 的古典难题,如尺规作图问题、三次实系数不可约方程的“不可简化情况”,以及伽罗瓦的根式可解判别定理等。 本书还有四个附录:附录1讨论了复数的指数形式表示与三角形式表示之间的一个联系——棣莫弗公式;附录2证明了联系两个正整数及其 公因数的贝祖等式;附录3给出了计算三次方程的判别式D的方法与结果;附录4详细地论