《Ь.П.吉米多维奇数学分析习题集题解》自1979年出版发行以来,历经30多个春秋,一直畅销不衰,深得读者厚爱。读者通过学习该书,对掌握数学分析的基本知识、基础理论和基本技能的训练,感到获益匪浅,赞誉
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,很富盛名习题,莫过于苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当
比较系统地对无穷级数在数学中所起的技术工具作用与连分数解析理论构造闵可夫斯基(Minkowski)函数及将其开拓到复数域上作了介绍。特别较为无穷发散级数的几种和性结合实际地作了论述和论证。当然这是《无穷级数与连分数》在数学思想方面的体现。 《无穷级数与连分数》章主要介绍无穷收敛级数在经典与近代数学中的技术工具作用,第二章主要介绍无穷发散级数作为某些函数的渐进级数作相应的数值计算与求微分方程的数值解。同时不同程度地阐明了对无穷发散级数的几种可和性方法。第三章论述连分数与无穷级数的关系及连分数的解析理论。第四章应用其连分数的解析理论,特别是Denjoy引理构造了闵可夫斯基函数,而这个函数具有明显的特征,顺便将其解析开拓到复平面的某个区域内,给出最普遍的表示形式。
《傅里叶分析导论》由在国际上享有盛誉普林斯大林顿大学教授Stein撰写而成,是一部傅立叶分析的入门教材,理论与实践并重,为了便于非数专业的学生学习,全书内容简明、易懂.全书分为三部分,部分介绍傅立叶级数的基本理论及其在等周不等式和等分布中的应用;第二部分研究傅立叶变换及其在经典偏微分方程及Radom变换中的应用;第三部分研究有限阿贝尔群上的傅立叶分析。书中各章均有练习题及思考题。目次:傅立叶积分的起源;傅立叶级数和基本性质;傅立叶级数的收敛性;傅立叶积分的应用;IR上的傅立叶变换;IRd上的傅立叶变换;有限傅里叶分析;Dirichlet定理。
《吉米多维奇数学分析习题集题解5(第4版)》4462题中的近三成的习题,根据题型的不同,在原题解的前面,分别或给出提示,或给出解题思路,或给出证明思路。冀图启发读者怎样分析该题,怎样下手求解;启发读者怎样总结解题的规律;启发读者怎样正确使用有关的数学公式、概念和理论,开拓视野,活跃思路;帮助读者逐步解决学习中的困难,为他们在学习过程中提供一个良师益友。这是本次修订的主要工作。根据当前的语言习惯,对《吉米多维奇数学分析习题集题解5(第4版)》的文字作了较多的润色,使其表述更加准确,更加简洁凝练。
本书是为泛函分析专业课程的后续课程设计的,主要介绍框架的相关理论。内容包括经典基础理论以及Hilbert空间中带有结构的框架、融合框架、K-框架、g-框架、Xd-框架及其对偶等的最新研究成果。
“数值分析”也叫“计算方法”,主要研究使用计算机解决数学问题的数值计算方法和理论。本书主要内容包括非线性方程(组)求根、解线性方程组的直接法和迭代法、曲线拟合和函数插值、数值微积分、常微分方程的数值解法、矩阵的特征值问题等。考虑到工科院校该课程教学的目的是满足工程和科研应用需要,因此本书更注重介绍工程应用的方法,弱化数学理论的推导证明,并且各章大多配有应用案例、上机实验和习题。本书提供配套电子课件,登录华信教育资源网注册后可以免费下载。 本书适合作为普通工科院校少学时本科生和研究生教材或教辅使用。
第1章讲述sobolev空间,这是变分方法和分析的理论基础,介绍迹定理、紧性定理、嵌入定理及其新进展.第2章讲述peterli和丘成桐(1983)的本征值估计及其应用和改进.第3章讲述椭圆算子在sobolev空间的可解性、变分不等方程、单调算子理论和山路定理.第4章讲述lions(1973)创立的渐近分析理论、stiff问题的渐近展开和椭圆边界层问题的一般收敛定理,解决了lions(1973)中的一个公开的问题,分析了边界层形态的变化,给出改进后的brézis不等式在渐近分析和渐变引起突变中的应用.第5章讲述lions(1988)的hum和利用乘子方法建立的积分恒等式、haraux引理(1978,1989,1994)及其改进,统一和扩展了法国学者的波方程边界反馈的镇定性.第6章讲述变分方法在几何和相对论中的应用,给出gauss曲率和平均曲率的变分计算,介绍riemann几何初步,讨论数量曲率的变分,分析einstein用物理直觉建
费定晖、周学圣编演的《Ь.П.吉米多维奇数学分析习题集题解(第4版)》包涵了4462道数学分析相关函数习题,基本涵盖了这一学科的基础知识。其系统、全面、循序渐进的编排,使得本书长久以来成为了数学分析课
杨有龙编著的《泛函分析引论(高等学校十三五规划重点立项教材)》主要内容可分为三部分:第一部分为空间理论的建立,包含第一章“度量空间”和第二章“线性赋范空间与内积空间”;第二部分为两个空间之间线性映