本书系统介绍了复变函数的基本理论,包括复数的运算、复变函数的概念、解析函数的概念、解析函数的柯西积分理论、魏尔斯特拉斯级数理论、黎曼共形映射理论以及解析函数空间的有趣介绍等,体现了基本的复分析思想方法,适合于从事国际热门的解析函数空间上函数理论研究和算子理论研究的研究生在本科阶段的基本素养的培养。由于函数空间理论密切联系于工科电子通信类学科的信息处理与信号处理研究,故而也适合于电子通信类学科的面上公共课“复变函数”课程的教学。
《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》分为六个部分,从 多项式方程的求解与数系的扩张 、 整数的一些基本概念、定理与理论 、 数域、扩域与代数扩域的一些基本理论 、 多项式的一些基本概念、定理与理论 、 阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域 、 多项式方程的根式求解、克罗内克定理与鲁菲尼 阿贝尔定理 逐步展开,尽可能地用通俗易懂的方式细说 不可能性定理 的种种方面。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》可供高中学生、理工科大学生、大中学校数学教师以及广大的数学爱好者在学习与教学解多项式方
《实变函数论新编/高等教育 十二五 规划教材》分为三章:章 集合论基础与点集初步 介绍了集合的概念、运算、势,讨论了Rn中集合的特殊点和特殊集及其性质;第二章 可测集与可测函数 ,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章 Lebesgue积分及其性质 定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习 实变函数 更多体会数学创新方法,《实变函数论新编/高等教育 十二五 规划教材》提供了四个附录供学生自学,也便于教师概略性地选讲。 《实变函数论新编/高等教育 十二五 规划教材》的适用对象为数学与应用数学专业本、专科学生。因《实变函数论新编/高等教育 十二五 规划教材》注重挖掘 实变函数 中数学创新思维与初等数学或
本书从1978年陕西省中学生数学竞赛中的一道试题引出法雷数列. 全文主要介绍了利用法雷数列证明孙子定理、法雷序列的符号动力学、连分数和法雷表示、提升为非单调的圆映射、利用法雷数列证明一个积分不等式等问题。全书共七章,读者可全面地了解法雷级数在数学中以及在生产生活中的应用。 本书适合数学专业的本科生和研究生以及数学爱好者阅读和收藏。
本书对于积分给予了更深层次的介绍,总结了一些计算积分的常用方法和惯用技巧,叙述严谨、清晰、易懂。
《高等学校数学专业规划教材:实变函数》是编者在长期从事应用数学、信息安全等专业的“实变函数”课程教学实践基础上结合科研体会编写而成的,全书共7章:第1章“从Riemann积分开始”主要是回顾数学分析中介绍过的Riemann积分,以便在第6章学习Lebesgue积分时做对比,同时可使读者对测度和积分理论的来源、背景有基本的了解;第2、3章是预备知识,分别介绍集合论的一些知识和欧氏空间中点集的基本知识与连续函数的性质;第4~6章是《高等学校数学专业规划教材:实变函数》的核心部分,分别介绍Lebesgue测度、Lcbesgue可测函数、Lebesgue积分理论;第7章介绍微分与积分。
《极值与*值(下卷)》共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与*值的相关应用,变量代换法是求函数极值与*值的方法之一,它可使问题简化,本文对此进行了探讨。《极值与*值(下卷)》适合中学师生及广大数学爱好者阅读学习。
The implicit function theorem is. along with its close cousinthe inverse func- tion theorem, one of the most important, and oneof the oldest, paradigms in modcrn mathemarics. One can see thegerm of the idea for the implicir func tion theorem in the writingsof Isaac Newton (1642-1727), and Gottfried Leib-niz's (1646-1716)work cxplicitty contains an instance of implicitdifferentiation. Whilc Joseph Louis Lagrange (1736-1813) found a theorcm that isessentially a version of the inverse function theorem, ic wasAugustin-Louis Cauchy (1789-1857) who approached the implicitfunction theorem with mathematical rigor and it is he who isgencrally acknowledgcd as the discovcrer of the theorem. InChap-ter 2, we will give details of the contributions of Newton,Lagrange, and Cauchy to the development of the implicit functiontheorem.
本书从实变函数论的发展简史出发,深入浅出地阐述了实变函数论的基本理论、基本问题和基本方法.本书共分为六章,内容包括: 实变函数论发展简史、集合与点集、可测集、可测函数、勒贝格积分理论和勒贝格意义下的微分与不定积分等.本书各部分主题鲜明,逻辑性强,内容的讲解由浅入深,对基本概念的阐述透彻,着力将每个知识点与中学数学的知识及已经学过的大学其他数学课程(例如数学分析)联系起来,便于读者比较与加深理解,增加对知识背景的认识.书中也极力渗透拓扑学思想及较勒贝格积分理论更加一般的积分理论,为后续课程的学习奠定基础.书中每节配有适量的习题,其中既有对易于混淆的基础知识的考查,也有更为深刻的结果.书末附有习题答案与提示,便于教师教学和学生自学. 本书既可作为高等院校数学与应用数学专业实变函数论
《数林外传系列:凸函数与琴生不等式》将中学阶段的大量初等不等式进行了较系统的归类和介绍,阅读本书可以开拓读者在不等式方面的视野,提高对不等式的认知和解决同类问题的能力,《数林外传系列:凸函数与琴生不等式》适合中学数学教师和对不等式感兴趣的高中学生。 本书以凸函数与琴式不等式为纲,将中等数学中的二百多个有趣的不等式有序地组织起来,可以大大拓广高中学生、中学数学老师在不等式方面的视野,有利于提高高中学生在不等式方面的数学修养。而不等式是高校自主招生、高考、数学竞赛中不可缺少的内容。全书资料主要来源有两部分,一部分取自国外英文中等数学杂志,另一部分是作者自编的,取自英文中等数学杂志的题目的解答很多都由作者改写,目的是降低阅读目槛,使具有高一数学知识的学生能读懂全书。本书一个鲜
本书是普通高等工科院校基础课规划教材之一,内容包括高等教育工科各专业所需要的复变函数和积分变换的基础知识。主要有复数与复变函数、解析函数、复变函数的积分、级数、留数、保角映射、傅里叶变换和拉普拉斯变换等。每章末附有小结和自测题,以便于读者自学时能够抓住重点和检查自己对本章学习的基本情况。书末附有习题答案和参考书目。 本书在编写过程中力求做到条理清楚、重点突出,注重解题方法的训练和思维能力的培养。本书可以作为高等教育工科各专业该课程的教材,亦可作为其他专业学习这门课程的教学参考书。本书使用学时建议为48~64学时。
本书是深圳大学复变函数与场论教研组编写的《复变函数与场论简明教程》一书的配套学习指导书。 本书是在深圳大学 复变函数与场论 课程建设的需求下编写的,内容主要以优秀教材《复变函数与场论简明教程》的课后习题及解答为主,给出了习题的详细解答过程、解题思路、依据和结果,以备学生参考。全书共分为6章,章节顺序及内容编排与教材一致。 本书可作为复变函数与场论课程的教学与学习指导参考书,供工科或理科院校师生参考使用。
本书是作者结合多年的教学实践和研究成果,按照普通高等学校机电类各专业、电信类各专业、数学和物理类各专业对复变函数与积分变换课程的基本要求而编写的通用教材.全书共8章,包括复数与复变函数、解析函数、复变函数的积分、复变函数的级数、留数及其应用、保形映射、傅里叶变换和拉普拉斯变换等内容.为方便学生深入掌握复变函数与积分变换课程的基本知识,作者精心设计了各章内容的相应梯度,每章配有适量的习题,书后附有部分习题参考解答.书末附有傅里叶变换简表和拉普拉斯变换简表,便于读者查阅使用.
本书共八章:复数与复变函数,解析函数,复变函数的积分,解析函数的级数表示,留数及其应用,共形映射,以及积分变换。每章内容分为四节: 基本要求与内容提要 简要介绍每一章的基本要求和内容。 典型例题与解题方法 对应掌握的重点,以及学生在学习过程中普遍遇到的难点,通过典型例题的解答予以重点分析。 教材习题同步解析 详细解答主教材的全部习题。 自测题 精选了相当数量的有代表性的习题,供读者自测。 本书可作为高等学校理工科和其他非数学类专业的学生学习复变函数与积分变换的参考书。
《复变函数与积分变换》是根据*提出的“高等教育面向21世纪教学内容和课程教学改革计划”的精神,并参照近年全国高校工科数学教学指导委员会工作会议的意见编写而成的。主要内容包括复数与复变函数、解析函数、复变函数的积分、级数、留数理论及其应用、保形映射、傅里叶变换、拉普拉斯变换共8章。本书在编排上,内容精炼、通俗易懂,突出基本概念和方法,定理证明简明扼要,力求与工程问题紧密结合。每章后都配有本章小结、例题选讲、自测题、习题,题型丰富,便于读者复习巩固,检查掌握程度。《复变函数与积分变换》可作为高等院校相关专业的教材,也可供科学技术人员参考。本书由江苏大学王丽霞主编。
《复变函数与积分变换》是复变函数与积分变换课程教材,介绍复变函数与积分变换的基本概念、理论和方法. 主要内容包括:复数与复变函数、解析函数、复变函数的积分、级数、留数、Fourier 变换、Laplace 变换、Matlab 在复变函数与积分变换中的应用等. 每章给出本章小结,颇具特色. 各章后配有适量习题,书末附习题参考答案,便于读者复习和总结. 《复变函数与积分变换》突出应用性,力求讲解细致、通俗易懂,加强数学软件在课程教学中的作用.