泛函分析是现代数学的一个重要分支,它不但具有高度的抽象性,而且具有高度的统一性和广泛的应用性。本书试图将抽象的泛函分析与一些具体的物理问题联系起来,内容涉及经典变分中的几个著名例子,线性泛函分析中一些基本定理,广义函数和Sobolev空间,泛函极值的一阶和二阶必要条件及充分条件,Ekeland变分原理及其推广和应用,Pontryagin**值原理及其应用,共轭凸函数理论及其应用,极小极大原理尤其是山路引理及其应用,具有Newton势的N(≥2)体问题的周期解,以及几个经典的不动点定理。
本书以数学模型及计算为主线,围绕微分方程与反问题,介绍了数学建模与计算的理论、方法及应用。微分方程及反问题研究在计算科学与工程领域具有特别重要的意义,在大数据和人工智能快速发展的时代正扮演着理论创新与技术升级的核心角色且起着不可替代的作用。《BR》 本书首先介绍数学建模的理论与方法,特别是微分方程、积分方程与反问题、线性代数方程组、**化等模型,着重建模、计算与应用三方面;然后分别给出了大数据领域、图像处理与压缩感知领域中的建模与计算案例,供读者学习、研究参考。本书是新时代数学深度应用、新工科迅猛发展形势下的一本应用与计算数学书,具有交叉性、集成性、应用性特征,以激发读者活学数学、活用数学的思考与热情。
本书是关于Cauchy-Riemann方程的L2理论及其在多复变和复几何中应用的专著。全书共9章。第1章主要介绍泛函分析和Sobolev空间的一些预备知识。第2章从经典的irichlet原理入手引出平面区域上的H.rmander估计。第3章主要介绍一般拟凸域上的H.rmander估计,着重指出与一维情形的本质区别。第4章主要介绍H.rmander估计在构造全纯函数以及在研究多次调和函数奇性中的应用。第5章主要介绍H.rmander估计的一些变形。第6章主要介绍拟凸域上的Ohsawa-Takegoshi延拓定理及其在研究多次调和函数奇性中的应用。第7章主要介绍K.hler流形和Hermitian线丛的基本知识,以及全纯线丛的奇异Hermitian度量的光滑逼近。第8章主要介绍完备K.hler流形上相应于全纯线丛的奇异Hermitian度量的L2估计。第9章主要介绍完备K.hler流形上的L2延拓定理及其主要应用,即萧荫堂的多亏格形变不变性定理的证明。
内容简介: 本书为《不定方程及其应用》的中册.详细介绍了非线性不定方程(组)及其解法,其中包括因式分解法、配方法、奇偶分析法、判别式法等,还包括利用完全平方数的性质、二项式定理、费马小定理求解非线性不定方程(组).内容详细,叙述全面. 本书适合高等院校理工科师生及数学爱好者参考阅读
《复函数论导论》是一部介绍单复变函数解析理论本科生教程,内容体系十分严谨但又不失基础性。本书从基本定义开始,徐徐展开,除了微积分基本知识,没有做任何铺垫,深入讲解复分析的观点,可以说达到了这门学科的制高点。并且将这些主要知识点:如柯西定理,黎曼射影定理、mittag-leffler定理讲述的十分明朗。本书重在强调几何,专门有一章讨论共形射影,相当于讲述复函数理论的简明教程。每章都有大量的精选练习,从简单直接计算到很具有启发性思想的都具有。 读者对象:数学专业的本科生,研究生和相关专业的科研人员。
内容简介:本书共有七章,分别为勾股数的性质及其应用,佩尔方程及其应用,无穷递降法,指数中含有未知数的一些特殊的不定方程(组),几何问题中的不定方程,其他一些特殊不定方程的解法,数学竞赛中与不定方程(组)相关的问题.本书适合大学师生及数学爱好者参考使用.
《控制之美(卷1)——控制理论从传递函数到状态空间》涵盖了动态系统分析、经典控制理论与现代控制理论的核心基础内容。其中,经典控制理论以拉普拉斯变换为数学工具,通过传递函数分析系统的表现并进行控制器的设计;现代控制理论以状态空间方程为研究对象,以微分方程和线性代数为数学工具,从时域的角度分析系统的表现并设计系统的控制器。 本书在多个章节对比讲解了两种理论之间的区别与联系。本书共分为10章。第1章为绪论;第2、3章分别介绍使用传递函数和状态空间方程描述系统的方法;第4、5章使用这两种方法分析一阶系统与二阶系统的时域响应;第6章介绍系统稳定性的概念;第7、8章重点分析经典控制理论中的控制器设计方法,包含比例积分控制和根轨迹法;第9章介绍系统的频 率响应并与滤波器的设计相结合; 0章讨论现代控制理论中的控制器设
老大中编著的《变分法基础(第3版)》是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。 编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。本书内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法、力学中的变分原理及其应用以及含向量、张量和哈密顿算子的泛函变分问题。其中许多内容是作者多年来的研究成果,特别是提出完全泛函的极值函数定理,统一了变分法中的各种欧拉方程,创立含向量、向量的模、任意阶张量和哈密顿算子的泛函的变分理论,给出相应的欧拉方程组及自然边界条件,扩大了变分法的应用范围。本书
本书是一本经典著作,由论点集、极限之概念、函数、距离及联结、容量及可测性、线性体系、可测函数、定积分、不定积分及加性全连续集合函数、单变数函数、多变数函数共11章内容构成,本书译笔带有文言文遗风,读之别有风味。《实变函数论》可作为大学数学专业教师和学生教学学习用书,也可作为数学爱好者的兴趣读物。
《特殊函数概论/经典系列》较系统地讲述一些主要的特殊函数,如г函数、ζ函数、超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数等。同时也阐明一些在讨论特殊函数时常用的概念和理论,如关于函数的级数展开和无穷乘积展开,渐近展开,线性常微分方程的级数解法和积分解法等。在各章之末还附有习题,习题中包含了一些有用的公式作为本书正文的补充。 《特殊函数概论/经典系列》可供数学系、物理系的师生以及数学、物理和工程技术界的研究人员参考之用。本书由王竹溪、郭敦仁编著。
《特殊函数概论/经典系列》较系统地讲述一些主要的特殊函数,如г函数、ζ函数、超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数等。同时也阐明一些在讨论特殊函数时常用的概念和理论,如关于函数的级数展开和无穷乘积展开,渐近展开,线性常微分方程的级数解法和积分解法等。在各章之末还附有习题,习题中包含了一些有用的公式作为本书正文的补充。 《特殊函数概论/经典系列》可供数学系、物理系的师生以及数学、物理和工程技术界的研究人员参考之用。本书由王竹溪、郭敦仁编著。
This book is meant as a text for a first year graduate course in analysis. Any standard course in undergraduate analysis will constitute sufficient preparation for its understanding, for instance, my Undergraduate Analysis. I assume that the reader is acquainted with notions of uniform convergence and the like. In this third edition, I have reorganized the book by covering integration before functional analysis. Such a rearrangement fits the way courses are taught in all the places I know of. I have added a number of examples and exercises, as well as some material about integration on the real line (e.g. on Dirac sequence approximation and on Fourier analysis), and some material on functional analysis (e.g. the theory of the Gelfand transform in Chapter XVI). These upgrade previous exercises to sections in the text.
首先,这部书讲清楚了泛函分析理论对数学其他领域的应用。例如,第2A卷讲述线性单调算子。他从椭圆型方程的边值问题出发,讲问题的古典解,由于具体物理背景的需要,问题须作进一步推广,而需要讨论问题的广义解。这种方法背后的分析原理是什么?其实就是完备化思想的一个应用!将古典问题所依赖的连续函数空间,完备化成为Sobolev空间,则可讨论问题的广义解。在这种讨论中间,我们可以看到Hilbert空间的作用。书中不仅有这种理论讨论,而且还讲了怎样计算问题的近似解(Ritz方法)。 其次,这部书讲清楚了分析理论在诸多领域(如物理学、化学、生物学、工程技术和经济学等等)的广泛应用。例如,第3卷讲解变分方法和优化,它从函数极值问题开始,讲到变分问题及其对于Euler微分方程和Hammerstein积分方程的应用;讲到优化理论及其对于控制问题(
本书主要继承了作者本人的剑桥小册子 The Zeta function of Riemann 的内容.本书内容主要包括: ( s )函数,狄利克雷级数与 ( s )函数的关系, ( s )函数的分析特点,函数方程,近似公式, ( s )函数在临界带的次序.
本书深入浅出地引入多项式理想的Grobner基理论,给出Grobner基(特别是Grobner基的消元原理)在多元多项式方程(组)的求解、多项式理想结构性质、仿射代数结构性质、代数几何、域的代数扩张、整数优化以及图论等方面的一些基本应用,着力于引导读者认识多项式理想的Grobner基理论在代数结构+序结构+算法这个交叉领域平台上得以成功发展和有效应用的数学原理。
本书是作者近年来研究工作的总结。在介绍拓扑度理论的基础上,分别对二阶非线性微分方程边值问题,带p-Laplace算子的二阶方程边值问题,周期边值问题和高阶微分方程边值问题,给出了有解性、多解性及解得性的判断依据,展示了各类问题的研究技巧和方法。 本书适用于大学数学专业高年级学生、研究生、教师及对本方向有兴趣的研究人员。
这部书讲清楚了泛函分析理论对数学其他领域的应用。例如,第2A卷讲述线性单调算子。他从椭圆型方程的边值问题出发,讲问题的古典解,由于具体物理背景的需要,问题须作进一步推广,而需要讨论问题的广义解。这种方法背后的分析原理是什么?其实就是完备化思想的一个应用!将古典问题所依赖的连续函数空间,完备化成为Sobolev空间,则可讨论问题的广义解。在这种讨论中间,我们可以看到Hilbert空间的作用。书中不仅有这种理论讨论,而且还讲了怎样计算问题的近似解(Ritz方法)。 这部书讲清楚了分析理论在诸多领域(如物理学、化学、生物学、工程技术和经济学等等)的广泛应用。例如,第3卷讲解变分方法和优化,它从函数极值问题开始,讲到变分问题及其对于Euler微分方程和Hammerstein积分方程的应用;讲到优化理论及其对于控制问题(如庞特里亚
本书作者擅长写教科书,以选材仔细、论述清晰、实例丰富著称。本书是一部代理科研究生使用的泛函分析教材,读者只需具备积分和测度论的知识即可阅读。全书充分体现了作者的著书风格,以实例先行,从具体到一般,从浅入深,并配有许多精心挑选的例题和习题。