《中外物理学精品书系·经典系列5:特殊函数概论》较系统地讲述一些主要的特殊函数,如Г函数、超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数等,同时也阐明一些在讨论特殊函数时常用的概念和理论,如关于函数的级数展开和无穷乘积展开,渐近展开,线性常微分方程的级数解法和积分解法等,在各章之末还附有习题,习题中包含了一些有用的公式作为《中外物理学精品书系·经典系列5:特殊函数概论》正文的补充. 《中外物理学精品书系·经典系列5:特殊函数概论》可供数学系、物理系的师生以及数学、物理和工程技术界的研究人员参考之用.
本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分. 第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题. 第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法. 第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相
本书是关于Cauchy-Riemann方程的L2理论及其在多复变和复几何中应用的专著。全书共9章。第1章主要介绍泛函分析和Sobolev空间的一些预备知识。第2章从经典的irichlet原理入手引出平面区域上的H.rmander估计。第3章主要介绍一般拟凸域上的H.rmander估计,着重指出与一维情形的本质区别。第4章主要介绍H.rmander估计在构造全纯函数以及在研究多次调和函数奇性中的应用。第5章主要介绍H.rmander估计的一些变形。第6章主要介绍拟凸域上的Ohsawa-Takegoshi延拓定理及其在研究多次调和函数奇性中的应用。第7章主要介绍 K.hler流形和Hermitian线丛的基本知识, 以及全纯线丛的奇异Hermitian度量的光滑逼近。第8章主要介绍完备K.hler流形上相应于全纯线丛的奇异 Hermitian度量的L2估计。第9章主要介绍完备K.hler流形上的L2延拓定理及其主要应用,即萧荫堂的多亏格形变不变性定理的证明。
本书根据作者多年在中山大学主讲实变函数论的讲稿整理而成,主要关于测度论和积分理论,内容有集合与基数、测度、可测函数、积分、L2空间等.每一章都附有较多例题,介绍实变函数解题的典型方法与重要技巧.书中的习题都有解答或者提示,方便学生学习.本书一个重要特点是结合测度论的发展历史,对相关的数学家及其工作也作了简短介绍.
本书是在云南财经大学多次使用的微分方程讲义的基础上整理而成的。本书内容包括微分方程模型,常微分方程的基本概念,初等积分法,一阶常微分方程组,高阶线性常微分方程,偏微分方程的概念,线性偏微分方程的Adomian分解法,特征线法、达朗贝尔公式和分离变量法,布莱克-斯科尔斯方程,非线性偏微分方程的Adomian分解法,变分迭代法简介等。
本书深入浅出地引入多项式理想的Grobner基理论,给出Grobner基(特别是Grobner基的消元原理)在多元多项式方程(组)的求解、多项式理想结构性质、仿射代数结构性质、代数几何、域的代数扩张、整数优化以及图论等方面的一些基本应用,着力于引导读者认识多项式理想的Grobner基理论在代数结构+序结构+算法这个交叉领域平台上得以成功发展和有效应用的数学原理。
本书主要继承了作者本人的剑桥小册子 The Zeta function of Riemann 的内容.本书内容主要包括: ( s )函数,狄利克雷级数与 ( s )函数的关系, ( s )函数的分析特点,函数方程,近似公式, ( s )函数在临界带的次序.
内容简介: 《不定方程及其应用(上)》涉及数论、有限群论、组合数学、图论等多学科,以不定方程作为一条主线,并将不定方程的结果与方法应用于代数数论、有限单群、组合数学等数学领域中一些重要问题的研究。本套书选择了近几十年来国内外数学竞赛中的经典试题,进行了分析讲解,供数学爱好者参考,该书是其中的上册,由南秀全、杜雯编著。全书共分六章,内容包括二元一次不定方程及其解法、多元一次不定方程、多元一次不定方程组等。
本书主要作者Dimitri P. Bertsekas是美国麻省理工学院电气工程和计算机科学系的资深教授,他是“动态规划与*控制”、“约束优化与Lagrange乘子方法”、“非线性规划”、“连续和离散模型的网络优化”、“离散时间**控制”、“并行和分布计算中的数值方法”等十余部教科书的主要作者,这些教科书的大部分被用作麻省理工学院的研究生或本科生教材,本书就是其中之一。 阅读本书仅需要线性代数和数学分析的基本知识。通过学习本书,可以了解凸分析和优化领域的主要结果,掌握有关理论的本质内容,提高分析和解决*化问题的能力。因此,所有涉足*化与系统分析领域的理论研究人员和实际工作者均可从学习或阅读本书中获得益处。此外,本书也可用作高年级大学生或研究生学习凸分析方法和*化理论的教材或辅助材料。
本书是一本经典著作,由论点集、极限之概念、函数、距离及联结、容量及可测性、线性体系、可测函数、定积分、不定积分及加性全连续集合函数、单变数函数、多变数函数共11章内容构成,本书译笔带有文言文遗风,读之别有风味。《实变函数论》可作为大学数学专业教师和学生教学学习用书,也可作为数学爱好者的兴趣读物。
《俄罗斯数学精品译丛:复变函数引论》以莫斯科学派的逻辑方法组织复变函数内容,从基础知识到理论延拓,共分十三章,分别为:复数、复变数与复变函数、线性变换与其他的简单变换、柯西定理·柯西积分、解析函数项级数·解析函数的幂级数展开式、单值函数的孤立奇异点、残数理论、毕卡定理、无穷乘积与它对解析函数的应用、解析开拓、椭圆函数理论初步、保角映射理论的一般原则以及单叶函数的一般性质。基础知识讲解细致、全面,很好地构建了复变函数基础框架,拓展理论清晰、广泛,为复变函数的进一步学习和物理应用埋下了伏笔。
张善杰编著的《特殊函数计算手册(附光盘)(精)》较系统地阐述了各种特殊函数的定义、数学性质、算法、数表和程序。由特定微分方程的解定义的特殊函数有正交多项式(如Chebyshev、Laguerre和Hermite多项式),Gamma函数,Legendre函数类,Bessel函数(如球Bessel、变型Bessel、Ricatti-Bessel函数等),Kelvin函数,Airy函数,Struve函数,超几何函数,抛物柱函数,椭圆柱函数和旋转椭球函数;而由特定积分定义的特殊函数有误差函数、Fresnel积分、变型Fresnel积分、余弦和正弦积分、三类完全和不完全椭圆积分、Jacobi椭圆函数,以及指数积分等。各种特殊函数计算源程序给在所附光盘中。 《特殊函数计算手册(附光盘)(精)》可供从事物理学、力学、应用数学、大气科学,电磁场工程、航空航天工程等学科工程技术、研究人员,以及高等院校理工科本科生、研究生和教师参考。
老大中编著的《变分法基础(第3版)》是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。 编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。本书内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法、力学中的变分原理及其应用以及含向量、张量和哈密顿算子的泛函变分问题。其中许多内容是作者多年来的研究成果,特别是提出完全泛函的极值函数定理,统一了变分法中的各种欧拉方程,创立含向量、向量的模、任意阶张量和哈密顿算子的泛函的变分理论,给出相应的欧拉方程组及自然边界条件,扩大了变分法的应用范围。本书
本书作者擅长写教科书,以选材仔细、论述清晰、实例丰富著称。本书是一部代理科研究生使用的泛函分析教材,读者只需具备积分和测度论的知识即可阅读。全书充分体现了作者的著书风格,以实例先行,从具体到一般,从浅入深,并配有许多精心挑选的例题和习题。
布朗、丘吉尔编著的《复变函数及应用(英文版 第9版)》是复分析入门教材,内容丰富,写作精炼 ,论证严密。阐述了复变函数的理论及应用,还介绍 了留 数及保形映射理论在物理、流体及热传导等边值问题 中的应用。第9版对第8版做了全面修订,重新组织了 内 容,增加了很多新的示例和习题,更加方便教学。 这本畅销全世界的经典教材初版于20世纪40年代 ,被国外众多名校广泛采用,如美国斯坦福大学、加 州理工学院、加州大学伯克利分校、佐治亚理工学院 、普度大学、达特茅斯学院、南加州大学等。前几版 曾 被译成日语、西班牙语、阿拉伯语、希腊语、韩语等 众多版本,对复变函数的教学影响深远。
本书强调严格性和基础性, 书中的材料从源头——数系的结构及集合论开始, 然后引向分析的基础(极限、级数、连续、微分、Riemann积分等), 再进入幂级数、多元微分学以及Fourier分析, 后到达Lebesgue积分, 这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。书中还包括关于数理逻辑和十进制系统的两个附录.课程的材料与习题紧密结合, 的是使学生能动地学习课程的材料, 并且进行严格的思考和严密的书面表达的实践。 本书适合已学过微积分的高年级本科生和研究生学习。