微分动力系统的研究始于上世纪60年代初,它主要研究随时间演变的动力系统的整体性质及其在扰动中的变化,其前身为常微分方程定性理论和动力系统理论,随着对非线性力学问题研究的深入和系统科学各分支的形成,微分动力系统越来越成为有关学者关注的新兴学科领域。本书是作者根据多年科研与教学的积累编写而成,内容包括:动力系统简介,双曲不动点,Smale马蹄、Anosov环面同构和螺线圈吸引子,双曲集,公理A系统与Omega稳定性定理。本书行文简洁、观点极具特色,书中将双曲不动点理论和双曲集理论从数学实质上完全统一起来,从而达到揭示表面差异之下的实质上的一致,是一本有很高学术价值的著作。本书可供研究微分动力系统方向的研究人员,以及应用数学及相关专业的教师和学生使用参考。
本书围绕Lebesgue测度与积分及其相关内容,总结和归纳了一些常用的解决问题的方法,并通过若干典型例题加以说明。每一章后都配备了一定数量的习题,而且每题都有较为详细的解答,并尽量做到通俗易懂。 本书注重方法的讲解,因而对于初学者可以起到事半功倍的效果,对于备考研究生会有很大的帮助,也可以作为“实变函数”任课教师的参考书。
本书的编写依据是*颁布的高等学校财经类专业核心课程《经济数学基础——微积分》教学大纲,同时参考了近年来经济管理类硕士研究生入学统一考试数学考试大纲。因此,它可以作为高等财经院校本科各专业的《微积分》课程教材使用,亦可供有志学习本课程的自学者选用。 本书在内容取舍上尤其注重数学与经济学的有机结合,强调微积分的概念及有关原理在经济学中的应用,强调本书用到的有关经济学的概念的严密性与规范性,力图在保持传统教材优点的基础上,把微积分的基本原理和经济学的相关知识恰当结合,以更有利于课程的讲授与学习,并为学生以后的经济学学习打下良好的数学基础。 本书充分注意到数学基本概念和原理的逻辑性与严密性,同时也考虑了一些数学基本概念在经济学中的特殊应用。
本书是与普通高等教育“十二五”规划教材《大学数学:微积分学基础》(中国科学技术大学出版社)配套的学习指导书,是为适应高等学校独立学院经管类专业高等数学课程教学要求而编写的.全书共9章,各章节内容与教材互相对应,包括:函数,极限与连续,导数与微分,中值定理与导数的应用,不定积分,定积分及其应用,多元函数及其微积分学,无穷级数,常微分方程.每节均由学习目标、知识要点、基础例题分析、基础作业题、提高题五部分组成. 本书可作为高校独立学院经管类专业学生学习高等数学课程的辅导用书,也可作为教授“高等数学”课程教师和广大自学者的参考用书.