本书的内容是关于楼(building)理论及其在几何和拓扑中的应用。楼作为一种组合和几何结构由Jacques Tits引入,作为理解任意域上保距还原线性代数群结构的一种方法,Tits因此项工作获得2008年Abel奖。楼理论是研究代数群及其表示的必要工具,在几个相当不同的领域中具有重要应用。本书的第一部分是作者专为国内学生学习楼理论准备的导读资料,其中特别注重利用例子说明问题,可读性很强;第二部分则综述了楼理论在几何与拓扑方面的应用,不仅总结了近些年楼理论研究的成就,还提出了未来的研究方向。本书是一本观点较高、极具学术价值的数学学习资料,可供我国高等院校代数及相关专业作为教学参考书使用。 Symmetry is an essential concept in mathematics, science and daily life, and an effective mathematical tool to describe symmetry is the notion of groups. For example, the symmetries of the regula
内容介绍 本书部教程,可以作为高年级本科生或者研究的一年级课程,也可以用于自学。这第二版,增加了50来页新材料,许多篇幅都做了更新;简化了证明,增加了新例子和练习。必需的点集拓扑在附录中用25面的篇幅给出,另外的一些附录重述了实分析和线性代数。书中提供了许多练习和问题的提示和解答。流形、光滑曲线和曲面的高维类似物,这些都是现代数学的基本研究对象。将代数、拓扑和分析几个领域结合起来,流形已经很好地应用在经典力学、广义相对论和量子场论等多个领域。本书直达主题,流形的讲述旨在帮助读者更快地了解这个科目的本质。学完该书读者应该能够计算,至少是简单空间的Rham上同调,这是一个流形的本拓扑不变性之一。同时读者也获得了进一步学习几何和拓扑所必需的知识和技巧。目次:欧几里得空间;流形;切向空间;
本书以Hilbert空间中线性算子数值域以及相关问题为主线,对线性算子数值域基本性质以及应用进行阐述.本书的内容框架如下:第1章主要介绍Hilbert空间中线性算子数值域.第2章主要介绍Hilbert空间中有界线性算子数值半径.第3章主要介绍Hilbert空间中一些特殊算子的数值域.第4章主要介绍由Hilbert空间中线性算子数值域推广得到的一些特殊数值域,将Hilbert空间中线性算子数值域的研究提升到一个新的高度.第5章介绍Hilbert空间中线性算子的扩张理论,为Hilbert空间中线性算子数值域的应用提供平台.
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fields奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Mordell
三角形是几何图形中最基本的图形,是研究其他图形的先行组织者,是衔接图形与代数知识的支架,被称为古希腊几何学研究的主角。三角形以它独特的、神奇的魅力,搭建了几何学习的重要桥梁。本书将帮助学生直观理解和掌握三角形,经历得到三角形的基本性质,形成几何直观和推理能力,发展直观想象、逻辑推理、数学抽象等核心素养;并基于三角形的研究路径,研究三角形的定义、表示、画法、元素、性质、判定、特殊三角形、三角形关系、三角形性质应用,深度迁移得到几何图形探究的方法。本书将在双新的视觉下,循着三角形的探究学习之路,由三角形的学习开启几何探索的大门!
《线性拓扑空间选讲》主要讲述了线性拓扑空间的基本知识及其在泛函分析中的应用;着重强调了线性拓扑空间在分析学,尤其是在泛函分析中的重要性。《线性拓扑空间选讲》内容涵盖了与泛函分析紧密相关的诸多主题,如线性算子的连续性和有界性、Hahn-Banach定理、弱拓扑和*弱拓扑,以及赋范空间中的弱紧性和弱列紧性等。此外,本《线性拓扑空间选讲》还特别介绍了赋 -范空间,这是一类非局部凸的空间,近年来在图像识别等领域得到了一些应用。《线性拓扑空间选讲》由六讲和一个附录组成,在每一讲后面,配备了一些习题(书后附有部分习题解答或提示)。前三讲主要介绍了线性拓扑空间的定义以及其上的连续线性泛函的性质,后面三讲分别讲述了赋准范空间、赋 -范空间和局部凸空间。附录主要阐述了《线性拓扑空间选讲》用到的点集拓扑方面的知识。
《代数几何应用(第2版)》中介绍了代数几何的诸多应用,重点强调grabner基和结式的新进展。这是第二版新版本中做了较大改动:单独增加了一部分讨论矩阵如何被运用于特定的单项式序;修订了mora规范形式算术的表示;两节专门讨论了理想的grobner扇和grobner游动基算术;新增一章讲述序域、相关编码和berlekamp-massey-sakata解码算术;更新了参考资料,改进了证明,纠正了排版上的错误。本书由考克斯著。
1984年,吴文俊的学术专著《几何定理机器证明的基本原理》由科学出版社出版,这部专著遵循机械化思想引进数系和公理,依照机械化观点系统地分析了各类几何体系,明确建立了各类几何的机械化定理,着重阐明几何定理机械化证明的基本原理
本书对泛函分析的重要研究方向——Banach空间的凸性理论作了比较全面的总结,内容基本覆盖了近八十年凸性方面的主要研究成果,介绍了Banach空间的严格凸和一致凸的很多推广,也有很多关于范数可微和Banach空间的光滑性方面的结果.另外,对于光滑性很差的范数的性质,如粗范数,也作了较全面的介绍.
该书是一本关于光滑流形理论的导论性研究生教材,旨在让学生们熟悉掌握将流形用在数学和科研工作中需要的工具,比如光滑结构、切向量和余向量、向量丛、陷入和嵌入的子流形、张量、微分形式、de Rham上同调、向量场、流量、叶状结构、李导数、李群、李代数等。充分利用现代数学提供的强大的工具的同时,书中采用尽可能具体的研究方法, 选取了各种图像,并对用几何思维考虑抽象概念进行了直观的讨论。
本书的主要内容是函数空间的广义度量性质及基数函数性质。全书由两部分组成,部分介绍紧空间、仿紧空间、度量空间及度量空间的连续映像,第二部分介绍连续函数空间的拓扑结构、基数函数及某些重要的广义度量性质。本书展示了度量空间映像的核心内容及函数空间优美的对偶理论,突出了完全性在探索函数空间收敛性中的作用,把集论拓扑的研究应用于函数空间。
本书以几何代数理论体系与自动定理证明思想为指导,系统深入地研究了几何代数的形式化理论与公理化体系,构建了一个兼具代数推理和几何解算能力的统一形式化数学定理体系,对代数与几何从概念上进行了融合与拓展、从描述方法和运算法则上进行了综合与归纳,为代数理论赋予了“形”的特征,为几何理论提供了“数”的内涵,并将其初步应用于实际物理问题的证明,内容涵盖了自动定理证明、机器人、形式化验证等人工智能领域。全书主要内容包括:几何代数理论的进展、形式化理论;HOLLight定理证明器体系;几何代数结构的形式化;几何与物理解释的形式化;单目相机姿态估计模型的形式化分析、对称陀螺运动的形式化分析等初步应用案例。作者长期对系统形式化与自动定理证明进行深入研究,并在机器人安全验证等领域持续实践迭代,本书是对该过
无
《在陈省身先生影响下的微分几何》是献给20世纪伟大的几何学家之一陈省身先生100周年诞辰的纪念文集。它包括了世界各地的数学家、特别是华人数学家的优秀研究文章。这些文章评述了陈省身先生所研究领域的目前状况,并讨论未来的发展方向,r8容涵盖了Gauss—Bonnet公式、共形几何、CR几何、流形、Ricci流、Einstein度量、等参超曲面、比较定理.Tits厦等方面。 《在陈省身先生影响下的微分几何》适合研究生和年轻的数学工作者阅读,其他读者亦可从中找到相关领域的有价值的信息。