本书系统介绍锥约束优化的**性理论与增广Lagrange方法,主要内容包括变分分析的相关基础、约束集合的切锥与二阶切集、对偶理论、非线性锥约束优化的一阶**性条件和二阶**性条件、三类重要的锥约束优化的**性条件、凸规划的内点算法以及非凸半定规划的增广Lagrange方法的收敛速度估计等.
本书是解放军信息工程大学信息工程学院参加全国大学生数学建模竞赛获奖论文的第二卷,主要是从该院2006~2011年获全国一等奖的论文中精选出的18篇优秀论文编辑整理而成,同时收录了本书主编作为命题人撰写的两篇评述文章,即共收录20篇论文,截至2011年解放军信息工程大学信息工程学院在全国大学生数学建模竞赛中获得一等奖40多项,二等奖50多项,其中第一卷收录19篇,本卷收录的论文都是从近6年中获奖论文中精选出来的有创造性和代表性的优秀论文。每篇论文都按照竞赛论文的写作要求,包含论文的摘要、问题的重述、问题的分析、模型的假设与符号说明、模型的建市与求解、模型的分析与检验、模型的评价与改进方向等内容,基本保持了参赛论文的原貌,在每篇论文后面编者都给出了简要的点评。最后,在附录中给出了2006~2011年全国大学生数学建模竞
本书系统介绍**化问题的稳定性分析的基本理论,讨论稳定性理论在具体优化问题中的应用,基本理论部分包括变分分析的相关素材、对偶理论、集值映射的稳定性概念及相互关系、稳定性质和微分准则、线性系统与非线性系统的稳定性.应用部分包括凸优化问题的稳定性分析、一般优化问题的稳定性分析及三类锥规刘(非线性规划、二阶锥约束优化及半定优化)问题的稳定性分析,其中三类锥规划问题的稳定性分析分别涉及**性条件、Jacobian**性条件、强二阶充分性条件、稳定性的等价刻画及孤立平稳性等内容.
线性锥优化是线性规划的延伸,也是非线性规划,尤其是二次规划的一种新型研究工具,其理论性强,应用面广,值得深入研究。本书系统地介绍了线性锥优化的相关理论、模型和计算方法,主要内容包括:线性锥优化简介、基础知识、**性条件与对偶、可计算线性锥优化、二次函数锥规划、线性锥优化近似算法、应用案例和内点算法软件介绍等。《BR》 本书不仅包含了线性规划、二阶锥规划和半定规划等基本模型,还引进二次函数锥规划来探讨 一般化的线性锥优化模型。同时,在共辄对偶理论的基础上,系统地建立了线性锥优化的对偶模型,分析了原始与对偶模型之间的强对偶性质。本书的主要内容来源于我们研究小组近些年工作总结,一些研究结果还 初始,仍然具有较新的研究价值和可能的扩展空间。
**化是一门应用性强且发展十分迅速的新兴学科。本书旨在系统介绍近代优化基本理论,主要研究线性规划和二次规划、二次约束二次规划等基本问题及其对偶模型,特别强调Lagrange对偶方法和半定松弛技术的运用,并以大量例子展示它们的特点,充分反映**化领域**研究成果。除预备知识外,本书主要内容包括凸分析基础、线性规划、二次规划、**化问题及其对偶表示、线性锥优化、矩阵束和S-过程等。