本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
本书系统地介绍了数值计算的基本概念、常用算法及有关的理论分析和应用。全书共分10章。第1章是绪论,介绍数值分析中的基本概念;第2~9章包含了数值计算中的基本问题,如线性方程组的数值解法、矩阵特征值和特征向量的数值解法、非线性方程及方程组的数值解法、插值方法、数据拟合和函数逼近、数值积分、数值微分以及常微分方程初值问题的数值解法等;第10章介绍了Matlab软件,并介绍了如何将之应用于数值分析的基本问题计算。读者可将其中的算法和命令用于数值实验和工程计算实践中去。各章都给出典型例题并配有一定数量的习题,书后给出了习题答案或提示。 本书可作为理工科大学工程硕士研究生的“数值分析”课教材,还可作为大学本科及硕士生的学习参考书,同时也可供工程技术人员参考使用。
郑继明、刘勇、刘平、尹龙军编著的《计算方法学习指导》是学习“计算方法”课程的辅导书,包括误差理论,插值与曲线拟合,线性方程组的数值解法、非线性方程(组)的迭代解法,矩阵特征值和特征向量的计算,数值积分和常微分方程初值问题的数值解法等。每章分为4个部分:“基本要求与主要内容” 给出了课程基本要求,系统地归纳了计算方法的基本理论;“例题选讲”和“练习题及解答”对各类典型问题较详细地给出了解题过程;“数值实验”运用 MATLAB软件给出了实验例题的计算机实现。 《计算方法学习指导》可作为理工科本科生的简明教材或参考书,也可供硕士研究生及从事科学计算的工作者参考。
该门课程的特点是算法公式多、理论分析严谨,因而很多同学在学习过程中,感到不是要领、难以把握,尤其在求解具体问题时往往难以做到灵活运用。实际上,每个算法都有相应的数学背景、数学原理和基本线索,但某些算法的构造思想是类似的,是其中一种算法的延伸和推广,比如数值积分的高斯求积公式可看成牛顿-柯特斯公式在求积节点由固定到待定的一种拓展。本书以此为依据,在内容提要中,把这些算法归为一类而顺次列出来,更好地帮助大家联系、理解和记忆及开拓思路。 本书以工科“计算方法”教学大纲为基础进行编写,编写过程中参考了近几年国内出版的多种计算方法教材和计算方法习题集、大量的自学考试和国内重点大学研究生入学考试试题,精选出近500多道典型题目并进行了详细分析与解答。全书共十章,涵盖了工科“计算方法”所要求