本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
【内容简介】 本书汇集了第46届至第50届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
无
王自强、曹俊英编写的《统计计算及其程序实现》以统计理论、数值分析、*优化理论与算法为基础,以MATLAB软件及R软件为平台,并把统计理论、数值分析、*优化理论与算法和计算机实现有机地结合起来,让读者理解和掌握统计方法解决实际问题的全过程。本书的主要内容有:基本的数值计算方法、* 优化算法、统计计算数值方法和多元统计方法,其中包括线性方程组的数值解法、非线性方程的数值解法、数值积分、线性规划问题的数值计算、非线性优化的数值计算、多元相关与回归分析、方差分析、线性与非线性模型及应用多元分析。 本书可以作为理工、经济、管理、统计等专业的高年级本科生和研究生的数理统计、*优化方法和数值分析的辅导教材或教学参考书,也可以作为统计计算课程的教材。
该书以索伯列夫空间为框架,介绍抽象的变分形式和Ritz-Galerkin法,基于peano余项估计介绍索伯列夫空间插值理论,从而建立标准有限元法的一般误差估计。还用相当篇幅讨论非标准有限元,包括非协调元、杂交元和混合元。特别还用一章介绍边界元法及多尺度Galerkin快速算法。
《线性方程组的高效迭代算法》共分六章.章是绪论,主要概述研究问题,研究动机,研究背景,研究方法以及创新点.第二章对实际问题提出H一矩阵松弛型矩阵多分裂迭代法和H一矩阵松弛型非定常矩阵多分裂多参数迭代法,分析方法的收敛性条件,比较多分裂迭代法之间的敛散速度,并用Matlab语言和MPI并行语言验证了算法的有效性.第三章进一步研究一些H一矩阵松弛型矩阵多分裂法新的收敛性结果,分别研究非线性方程组的非定常矩阵多分裂法,线性互补问题的矩阵多分裂法,松弛型矩阵多分裂SSOR法和松弛型矩阵多分裂TOR法,得到新的更弱的收敛性结果,并进行了数值试验的比较.第四章设一计求解非对称线性方程组krylov子空间的平方共扼残差(CRS)算法和适合分布式并行计算改进的平方共扼残差(ICRS)算法,并对两种方法进行了理论分析和算法比较,后数值试验表明所提方法较好的收
本书从信号处理的角度阐述小波分析的基本原理及其应用。从信号时-频联合分析引入小波变换,将信号的多分辨率分析及Mallat算法作为全书的重点,并在此基础上,进一步阐述了双正交小波多分辨率分析、小波包多分辨率分析、提升小波应用,还讲述了小波分析在奇异性检测、去噪及数据压缩中的应用。为鼓励读者将理论学习与上机实验结合以提高学习效率,书中提供了许多MATLAB仿真程序,供读者参考。 本书适用于从事信号处理、图像处理等方面工作的工程技术人员,也可作为理工科各专业高年级本科生、研究生学习小波理论与应用的参考书。
本书介绍了数值方法的理论及实用知识,并讲述了如何利用MATLAB软件实现各种数值算法,以便为读者今后的学习打下坚实的数值分析与科学计算基础。本书内容丰富,教师可以根据不同的学习对象和学习目的选择相应的章节,形成理论与实践相结合的学习策略。书中的每个概念均以实例说明,同时还包含大量的习题,范围涉及多个不同领域。通过这些实例进一步说明数值方法的实际应用。本书的突出特点是强调利用MATLAB进行数值方法的程序设计,可提高读者的实践能力并加深对数值方法理论的理解;同时它的覆盖范围广,包含数据方法的众多研究领域,可以满足不同专业和不同层次学生的需求。 本书概念清晰、逻辑性强,可作为大专院校计算机、工程和应用数学专业的教材和参考书。
本书系统总结了到本世纪初为止近似算法领域的成果,重点关注近似算法的设计与分析,介绍了这个领域中重要的问题以及所使用的基本方法和思想。全书分为三部分:部分使用不同的算法设计技巧给出了下述优化问题的组合近似算法:集合覆盖、施泰纳树和旅行商、多向割和k-割、k-中心、反馈顶点集、短超字符串、背包、装箱问题、小时间跨度排序、欧几里得旅行商等。第二部分介绍基于线性规划的近似算法。第三部分包括四个主题:在一个格中找一个短向量、计数问题的可近似性、基于PCP定理的近似困难性以及未解决的问题等,这些问题都是近似算法领域中的前沿研究内容。 本书可作为计算机科学、应用数学、运筹学、信息科学与网络工程、物流与交通运输、管理科学与工程、生命科学、电子科学与技术等学科专业的研究生及高年级本科生的教学用书,对
本书是作者在多年为理工科硕士研究生讲授计算方法课程的基础上编写而成的。全书共分11章,内容包括:计算方法概论,数值计算理论基础,非线性方程求根,线性与非线性方程组的数值解法,矩阵特征值与特征向量的计算,插值与逼近,数值积分与微分,常微分方程初值问题与边值问题的数值解法。本书选编了较多不同层次的例题和习题供教师选择,并在各章引人数学软件Matlab的应用实例,以提高学生的学习兴趣和应用能力。对某些较深入的内容,本书以附录形式放在相应章节的后面,教师可以根据学时选讲或不讲,不影响整个体系。本书内容丰富,阐述简明易懂,注重理论联系实际。可作为理工科大学非计算数学专业的研究生或高年级本科生的教材(适合36-64学时),也可作为科技工作者的参考书。
本书深入浅出地介绍了LINGO的基础知识、用LINGO语言描述现实问题的方法和用Excel处理数据的方法,重点是这两种软件在解决各种优化问题以及在数学建模中的应用,通过丰富的实例介绍了把实际问题转化为数学模型的方法,以及综合运用LINGO等软件来求解模型的手段和技巧。 本书的主要内容包括LINGO的基本用法、LINGO在图论和网络模型中的应用、用LINGO求解非线性规划和多目标规划、LINGO与其他软件之间的数据传递、Excel在数学建模中的应用和LINGO在数学建模中的应用实例等。 本书可作为高等院校研究生、本科生和专科生的数学建模培训教材或参考书,也是从事数学建模教学和建模竞赛指导的教师、对数学建模有兴趣的科研人员有价值的参考书,还可以作为一本内容较全面的LINGO软件使用和培训教材。
本书详细介绍了求解数学物理反问题的数值计算方法以及在相关的各个学科的应用。这些方法包括正则化方法、*化计算方法、统计的方法、支撑向量机以及其它的数值代数方法等等。本书既研究线性反问题,又研究非线性反问题,并介绍了工程、物理、医学、金融、遥感、模式识别、生命科学、大气科学与经济应用背景的反问题。在附录中还给出了示范性的MATLAB语言源程序。全书共分六个部分。部分介绍基本概念和事例;第二和第三部分分别研究线性反问题的计算方法和典型应用;第四和第五部分研究非线性反问题的计算方法和典型应用;第六部分简要介绍了反问题的研究方法及其应用的*进展。 本书适合于数学物理专业的科研人员、大学教师使用,又可以作为相关专业研究生和高年级大学生的教材,亦可供从事科学和工程领域中反问题(比如说信号/图像处
《解析数论研究》中作者采用正确的方法,解决了大整数表为两个平方与一个素数之和这个著名猜想,给出能表为两平方和的整数的分布渐近公式这一经典问题的带有O型余项的结果,并对相邻素数差问题、奇数Goldbach猜想、三维除数问题等著名问题进行重新处理(以前一些处理有问题),给出适当的结果。《解析数论研究》适合从事解析数论研究的专家学者阅读。
《数值计算方法(第2版)》介绍了数值计算方法.内容涉及数值计算方法的数学基础,数值计算方法在工程、科学和数学问题中的应用以及MATLAB程序,涵盖了经典数值分析的全部内容:包括非线性方程的数值解法:线性方程组的数值解法;矩阵特征值与特征向量的数值算法;插值方法;函数*逼近;数值积分;数值微分;常微分方程数值解法等.基于MATLAB是本书的特色,对书中所有的数值方法都给出了MATLAB程序,有大量翔实的应用实例可供参考,有相当数量的习题可供练习, 《数值计算方法(第2版)》可作为理工科本科生、研究生数值计算方法课程教材或参考书,也可作为科技人员使用数值计算方法和MATLAB的参考手册。
本书参考国内外相关文献,结合*关于“数值计算方法”课程的基本要求,从基本概念、基本理论和方法系统介绍数值分析与计算的相关内容和观点.本书既注重理论的严谨性,又注重方法的实用性,重点阐明数值分析和各种算法构造的基本思想与原理.其主要内容包括:绪论、线性方程组的直接解法、解线性方程组的迭代法、矩阵的特征值和特征向量计算、插值法、曲线拟合、数值微分与数值积分、非线性方程和方程组的数值解法、常微分方程数值解法、瞬时扩散方程的差分解法简介和Matlab软件介绍等.全书重点突出,各篇章相互衔接,每章均附有应用实例与习题.
Mathematica是世界著名的数学软件,*的Mathematica 5有许多重大的改进,功能更加完善。本书通过大量精选的实例,讲解Mathematica 5的符号运算、绘图、高精度计算、程序设计等基本功能,介绍它在高等数学、线性代数、微分方程、概率统计、计算方法、运筹学与数学建模等课程中的应用。本书作者具有多年的Mathematica教学和开发经验,通过作者开发的实例,详细指导读者如何编写、调用自己的程序包。书中配备的习题大多来自当今被广泛使用的数学教材,展示了软件的实用性。 本书的读者包括本科生、研究生、大学教师、科研人员、工程技术人员以及其他数学爱好者。本书可以作为数学软件课程的教材,也是学习大学数学的一本通用的辅助教材。对于需要推导计算的科技人员,本书也是一本实用的入门教材,既可以全面深入地学习,又可以即查即用。
本书首先阐述了网络状态认知和流量控制的必要性及常用方法,然后介绍了模糊逻辑理论和方法、自然计算模型和方法, 并将模糊综合评判理论和自然计算理论应用到网络状态认知和流量控制领域,后给出了几个将自然计算应用于网络状态认知和流量控制的典型案例。本书可作为高等学校计算机和网络通信相关专业高年级本科生、研究生的参考书,也可供相关领域工程技术人员参考。