本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、艾滋病和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从
本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
本书深入讨论Krylov子空间算法的核心思想和理论,结合算法的推导过程,介绍Krylov子空间算法和预处理技术的**进展,同时介绍Krylov子空间算法及预处理技术在电磁计算和数字图像处理中的应用.
曹定爱编著的《累积法理论(精)》在介绍数理统计的基本概念、参数估计理论、小二乘估计和联立方程式的数量分析等内容的有关理论知识的基础上,系统地提出累积法估计理论,即建立了一种新的估计一般线性回归模型中未知参数的参数估计方法,并推广其应用.其主要涉及:普通累积和的概念及其统计特征,普通累积法及其估计理论(包括普通累积法估计与小二乘估计、普通累积法估计法与工具变量法等知识的介绍),一元线性回归模型中普通累积法估计与小二乘估计,多元线性回归模型中普通累积法估计与小二乘估计,多级普通累积法的估计法和普通累积法估计法在联立方程组模型参数估计方面的推广等内容。 《累积法理论(精)》适用于经济分析、金融分析、保险工程、证券分析、计算数学、工程数学、统计分析等领域的高年级本科生、研究生以及高校
《高精度无网格重心插值配点法:算法、程序及工程应用》论述了基于重心型插值的高精度无网格配点法的基本算法和计算程序;详细讨论了常微分方程(组)边值问题和初值问题、积分方程和积分-微分方程、二维椭圆型偏微分方程边值问题、波动方程和热传导方程的重心插值配点法计算公式和程序;论述了不规则区域上重心插值配点法的具体算法;给出了重心插值配点法在结构变形、屈曲和振动分析方面的算法和程序;通过大量算例说明重心插值配点法的有效性和计算精度。 《高精度无网格重心插值配点法:算法、程序及工程应用》可供从事数值分析领域研究的工程技术人员和高等院校计算数学、计算力学、土木工程等专业本科生、研究生参考。
本书的主要内容是讲解工程领域中经常使用的各类数值求解方法。作者Steven Chapra博士执教于塔夫茨大学土木和环境工程系;而作者Raymond P.Callale是密歇根大学的名誉教授,在二十多年的教学中,他曾讲授了计算机、数学和环境工程领域中的多门课程。两位作者在数值分析方面有着深厚的理论根基和广博的实践知识。本书当前是第五版,随着数值方法和计算机的发展,作者不断地更新其中的内容,所以本书是数值方法方面极富价值的教科书,也可以作为广大工程技术人员一本不可多得的优秀参考书。
《*化方法应用分析》系统讲述如何使用*化科学来解决实际问题并创造*化价值。精心选取了石油、化工、机械、冶金、能源、电力电子、航空航天、运输、通信、计算、网络、农业、生物、医药、经济、管理等领域的七十多个应用实例,系统阐述了*化方法在各行各业的广泛应用。详细给出了实际优化问题,从优化模型的建立到优化模型的求解计算,一直到优化结果的分析与比较的全过程,通俗易懂,使读者近距离全面了解优化技术是如何解决实际问题的。 《*化方法应用分析》可作为高等院校自动化、控制、系统工程、工业工程、计算机、应用数学、经济、管理、化工、材料、机械、能源等相关专业的教材,也可作为有关研究人员和工程技术人员的参考书。
《数值分析》介绍了科学与工程计算中常用的数值计算方法及相关理论。内容包括解线性方程组的直接法和迭代法、插值法、函数*逼近、数值微积分、非线性方程(组)的迭代解法、矩阵特征值和特征向量的计算、常微分与偏微分方程数值解法等。其中包含了一些在实际中有重要应用的新方法,如求解超定方程组的小二乘法、求解线性方程组的基于伽辽金原理的迭代法、奇异值分解、广义特征值问题的求解方法等。同时。对数值计算方法的计算效率、稳定性、收敛性、误差估计、适用范围及优缺点也进行了分析和介绍。 《数值分析》可作为高等院校数学系各专业本科生和各类工科专业研究生的教材或教学参考书,也可供从事科学与工程计算的科研工作者阅读参考。
本书主要讨论广义线性模型在单变量及多变量回归分析中的应用。书中通过生物学、经济学和社会学等方面多达60余个应用实例,对近年来广义线性模型新的科研成果作了系统介绍,内容新颖,实用性强。
量子信息学是20世纪80年代以量子物理学为基础,融入计算机科学、经典信息论形成的新兴交叉学科,主要包括量子通信和量子计算两个分支。 本书是关于量子计算机研究,分上、下两册出版。上册是关于量子计算机原理和物理实现,下册是关于量子纠错和容错量子计算。 由李承祖和陈平形等编著的《量子计算机研究》为下册,内容包括经典纠错码理论、CSS量子纠错码、稳定子量子纠错码、无消相干子空问和无消相干子系统理论、容错量子计算、拓扑量子计算等。书后附录内容包括量子力学概要、量子纠错码的群论基础、群表示理论、李群和李代数。 《量子计算机研究》兼有基础性和系统性特色,既包含学科主要基础理论,又系统介绍当前该领域前沿主要研究方向和动态。全书体系清晰、逻辑严谨、分析深入、推导详尽。既可作为高等院校的研究生教材或教学参
本书是网格计算领域的奠基性著作,编者lan Foster和 Carl Kesselman均为网格计算技术的开拓者。第2版阐述了网格技术在实现和规范方面取得的*进展,增加了三分之一的内容,从科学和工业需求角度介绍了网格的背景,实现和发展,网格在工程,商务领域以及物理学、医学、生物学、天文学、地震工程学等学科的广泛应用,网格的基础架构,网格数据和知识,网格工具,网格的基础设施等。同时开创性地阐述了在科学研究与工程实践中大规模资源共享和虚拟的问题,以及机构间的资源共享和技术需求中的安全、可靠和高效之间的关系。 本书可以作为高等院校相关专业本科生及研究生的教材和参考读物,对网格计算及相关技术领域的研发人员来说也具有很高的实用和参考价值。
无
Iterative Methods for Sparse Linear Systems, Second Edition gives an in-depth, up-to-date view of practical algorithms for solving large-scale linear systems of equations. These equations can number in the millions and are sparse in the sense that each involves only a small number of unknowns. The methods described are iterative, i.e., they provide sequences of approximations that will converge to the solution. This new edition includes a wide range of the best methods available today. The author has added a new chapter on multigrid techniques and has updated material throughout the text, particularly the chapters on sparse matrices, Krylov subspace methods, preconditioning techniques, and parallel preconditioners. Material on older topics has been removed or shortened, numerous exercises have been added, and many typographical errors have been corrected. The updated and expanded bibliography now includes more recent works emphasizing new and important research topics in this field. This book can
This book is a standard for a complete de*ion of the methods for unconstrained optimization and the solution ofnonlinear equations....this republication is most welcome and this volume should be in every library. Of course, there exist more recent books on the topics and somebody interested in the subject cannot be satiated by looking only at this book. However, it contains much quite-well-presented material and I recommend reading it before going ,to other.publications.
兰德尔 勒维克*朱华君译的《守恒律方程的数 值方法》着重介绍守恒律方程的数学理论和数值方法 。守恒律方程的数学理论部分从标量守恒律到方程组 的守恒律,从线性对流方程到非线性方程的顺序由简 到难地给出了守恒律方程的特性介绍。数值方法方面 介绍了数值方法的特性,包括收敛性,稳定性和CFL 条件等,介绍了经典的Godunov格式,近似Riemann解 算子和非线性稳定性,还介绍了高分辨格式,包括限 制器,人工粘性,TVD格式和ENO格式等内容。
本书把握当今信息时代数字化、互联网、大数据三大技术特征,着眼于当代科学活动及科学文本的大数据引领科学计量学深刻变革的理念,从理论基础和应用两个方面介绍科学计量大数据的**进展。理论基础部分,从科学计量的大数据基础的角度,论述了数字出版、互联网与科学计量大数据,面向科学计量的数据体系;科学论文的使用数据和论文使用数据的开放获取优势;应用部分,分别探讨了科学家的工作时间表,科学论文在社交网络中的传播机制,实时追索论文使用数据呈现的研究热点与研究前沿,以及基于使用、引用等多重指标的单篇论文评价体系。
有限元语言是一种适用于有限元方法求解偏微分方程的模型语言。采用有限元语言编程就是书写偏微分方程和算法,然后由生成器产生全部FORTRAN语言的有限元程序。本书的主要内容包括:微分方程表达式,单物理场算法和多场耦合有限元算法的描述语言;元件化程序设计方法;有限元的数据结构;形函数库,微分算子库,单物理算法库等。
本书作者现任美国西北大学教授,多种国际权威杂志的主编、副主编。作者根据在教学、研究和咨询中的经验,写了这本适合学生和实际工作者的书。本书提供连续优化中大多数有效方法的全面的*的论述。每一章从基本概念开始,逐步阐述当前可用的*技术。 本书强调实用方法,包含大量图例和练习,适合广大读者阅读,可作为工程、运筹学、数学、计算机科学以及商务方面的研究生教材,也可作为该领域的科研人员和实际工作人员的手册。 总之,作者力求本书阅读性强,内容丰富,论述严谨,能揭示数值*化的美妙本质和实用价值。
周海云所*的《不动点与零点的迭代方法及其应用(精)》中大部分内容是从浩繁的文献资料中搜集、筛选、加工、整理而来的,许多定理的证明是经过*者简化后重新给出的,有些结果尚未正式发表。本书确有系统整理日益膨胀的文献资料之目的,但*无穷尽一切研究成果之企图。
数值数学是数学的一个分支,它提出、发展、分析并应用科学计算中的方法于若干领域,如分析学、线性代数、几何学、逼近论、函数方程、优化问题和微分方程等等。而其他领域,如物理学、自然和生物科学、工程、经济、金融科学也经常提出问题,而问题的解决同样需要科学计算。 因此可以说,数值数学是现代应用科学中具有很强相关性的不同学科的一个交叉学科,是这些学科中定性和定量分析的重要工具。 写作《数值数学》的目的之一,是给出数值方法的数学基础,分析其基本的理论性质(如稳定性、精度、计算复杂性),应用MATLAB这一界面友好并被广泛接受的软件,通过例子和反例说明其特征和优缺点。讨论每一类问题时,都评述*适合的算法,进行理论分析,并利用一个MATLAB程序验证理论结果。《数值数学》每一章都包含例子、练习,并运