本书是《工程控制论》(第三版)的下册。这一册共九章。第十三章讨论摄动理论在控制系统设计中的应用,其中特别说明在飞行控制系统中的应用。第十四、十五两章介绍控制系统在随机干扰下的分析和设计。第十六、十八章讨论了适应性控制系统的设计。第十九章介绍了提高控制系统可靠性的各种方法。第十七、二十、二十一这三章分别是:逻辑控制和有限自动机(第十七章),信号与信息(第二十章),大系统(第二十一章)。这些方面已构成工程控制论这门学科的重要研究方向。书末还附有“有关中文著作目录选辑”,可供读者查阅。
传统材料研发模式主要基于实验“试错法”,其研发周期长、效率低,人工智能驱动的科研范式变革和新材料数字化研发模式能有效地降低研发成本,缩短研发周期。本书基于计算、数据、AI和实验“四位一体”的新材料集成式智能化研发理念,提出了基于材料基因编码的新材料智能设计范式,从企业级新材料研发和面向科研的材料计算视角,重点围绕高通量材料集成计算、多尺度材料计算模拟、材料数据库、材料数据机器学习、新材料研发制造软件等介绍了新材料数字化智能化研发和设计基本概念、方法、技术和应用。本书同时也介绍了国产的高通量多尺度集成式材料智能化设计工业软件MatCloud+,并通过一些精选案例介绍了材料计算、数据和新一代人工智能等数字化研发方法技术在新能源、金属/合金、石油化工、复合材料、新型功能材料等重点材料行业或领域的
本书系统介绍了知识图谱的概念、发展历程、技术体系、前沿技术与应用实践。在基础知识方面,本书囊括了知识图谱从源数据到产生决策的全生命周期的各个环节,分析了数据图谱和知识图谱的核心区别,介绍了图谱构建和知识表示等相关关键技术。在前沿技术方面,全面介绍了知识图谱自动构建、知识图谱融合和智能推理等问题和挑战。在应用实践方面,结合营销智能国家新一代人工智能开放创新平台建设,介绍了知识图谱在信息检索、推荐系统、可视化、问答机器人等场景下的实际操作案例。
本书系统地论述了水下机器人设计与分析的基本原理、方法和技术,介绍了FLUENT、MATLAB/Simulink、ANSYS、ADAMS等现代设计分析软件在水下机器人设计中的应用,并以作者及研究团队的科研成果为主线,系统地阐述了水下机器人设计与分析方法。全书共十章,包括水下机器人结构及流线型设计、能源与动力、系统辨识方法、运动分析、底层控制系统、虚拟样机技术、路径规划与轨迹跟踪、仿生侧线感知及局域导航定位方法等方面的内容。
本书主要内容分为四部分:①人工智能算法基础;②数据基础与表征;③人工智能与药物设计;④程序代码。通过系统介绍人工智能算法,阐述不同算法的原理、应用场景和算法特点,为后续介绍人工智能与药物研发的交叉内容提供基础。全书以药物研发流程为脉络,针对每个人工智能算法融入的关键步骤,首先介绍药物设计基础原理与现存挑战,进而系统性回顾介绍人工智能算法在该研究方向上的进展情况,每部分都穿插介绍已有的交叉应用实例,以利于加深对图书内容的理解与灵活运用。提供原始的代码文件,为读者开展实践应用提供直接资料。