,一方面,人类的资源越来越紧张,另外一方面,人类生存权利平等、生命价值高于一切等等,渐渐成为普遍价值。这样,如何在竞争的世界中合作共赢越来越被人们所重视。 然而,合作不仅仅是一个态度问题, 重要是方法问题。博弈论是关于理性人竞争与合作的理论,然而博弈论没有给出解决博弈困境以及如何合作的方法。本书利用博弈理论,分析如何在竞争性博弈中做到合作,以及在非竞争性的博弈即联盟博弈中,如何实现合作。本书利用大量具体案例深入浅出地阐述博弈中参与人“如何避免 糟”、“如何寻求 好”、“如何走出必然的困境”、“如何共存”等等合作的具体方略。 本书可看做是共赢的行动指南或行动方法论。
由中国运筹学会编著,介绍了运筹学学科发展情况,并对本学科的进展做了全面而准确的总结。学会对所负责的学科发展研究初稿进行研讨及学术交流后,为研究成果的后完成提出实质性修改意见和建议。整套丛书的特点:,确保权威性,注重研究工作的质量,确保研究报告为反映各学科发展情况的*权威性的指导性丛书;第二,体现前瞻性,学科涉及面较大的不要求面面俱到,应注重体现*热点、前瞻和重大学术进展;第三,将2007年第四季度学科发展的内容纳入进去,做到严谨、完整;第四,时效性好;第五,整体性强。
孙志忠编著的《计算方法与实习学习指导与习题解析(第2版)》是全国很好畅销书《计算方法与实习》一书的全部习题解答,涉及误差分析、方程求根、线性方程组数值解法、插值法、曲线拟合、数值积分与数值微分、常微分
本书是经济管理类各专业适用的运筹学辅导教材。本书包括两个部分:部分是运筹学各章节习题类型归纳与解析;第二部分是运筹学习题库,这部分的题全部都给出了正确的答案,有的还给出了解题的全过程,为学习运筹学的同学们提供了极大的选择空间。本书题材和习题取自全国高校广泛使用的清华大学出版社出版的《运筹学》和人民大学出版社出版的《运筹学通论》。 本书两个部分内容安排合理,便于学习运筹学的各个层次的同学们自学,亦可作为运筹学教学参考书。
《高等院校理工科教材:有限元法基础(第2版)》分为十章,章简要介绍有限元法的概念、发展和基本思想及特点;第二章从弹簧系统人手介绍桁架系统有限元求解方法,引入直接刚度法的概念;第三章采用直接刚度法和虚功原理两种方法推导了刚架系统的有限元计算格式,引人位移插值函数的概念;第四章在简要介绍弹性力学一般知识的基础上,运用第三章引入的虚功原理和推导过程推导了连续体平面力学问题的有限元列式,着重介绍了三角形单元和矩形单元;第五章讨论了轴对称问题的特殊性和轴对称问题的有限元求解方法;第六章介绍应用最为广泛的等参数单元,并引入数值积分的概念;第七章通过热传导问题引入变分法的基本概念并采用变分原理推导温度场问题有限元计算格式;第八章通过流体流动问题介绍加权余量法及采用加权余量法推导流场问题有限
根据运筹学的学科特点,本书对传统运筹学的内容和方法做了较大的改革。在系统地介绍了运筹学的基本概念、基本原理、基本思想、基本方法的基础上,借助于专业的优化软件Lingo来求解模型,特别突出解决实际问题的实用性。全书共分8章,主要内容包括线性规划、运输模型、整数规划、目标规划、动态规划、图与网络分析、排队论、决策论。书中除了精选的例题外,每章后附有大量的习题,章末附有实用案例,供教学和自学用。
本书为应用型本科院校《数学建模》普及性教育教材。内容包括数学建模概论、日常生活中的数学模型、微分方程模型、*化模型、初等概率模型、图论初步及其应用、层次分析法及其应用等七章。各章配有适量的练习题,书末附有练习题参考解答或提示。本书特点;难易度比较适中,符合应用型本科院校大学生的数学基础;问题提法比较新颖,符合时代气息;问题研究具有实际意义或理论价值;问题分析透彻,通俗易懂,趣味性强,便于自学。 本书可作为应用型本科院校理工科及经济类各专业《数学建模》课程的教材,也可供参加全国大学生数学建模竞赛的学生、数学爱好者及科技工作者参考。
经典科学革命理论中另一个被广泛征引的观念是科学共同体对某一理论或学说的认同。就控制论思潮的萌动及其终由二战所催生而言,确实体现了科学群体的共意,然而在其后一段较长的传播过程中,在控制论所涉及的不同知识领域,以及在不同的国家中,却出现了一些协调甚至相当诡异的现象。 本书笔者尝试从传播的角度,选取控制论发生和传播鼎盛的1940—1970这三十年时间,集中对这一学科理论在美国的发生和发展,以及它在两个社会主义国家——苏联和中国的传播状况作个案分析。行文采取变焦分析的手法展开对控制论的考察,以图揭示控制论作为一门横断型学科,其发生发展的自身规律,以及意识形态何以影响它的传播,控制论发展的内在规律又如何在国际政治和意识形态下对理论传播发挥作用。
孙志忠编著的《计算方法与实习学习指导与习题解析(第2版)》是全国优秀畅销书《计算方法与实习》一书的全部习题解答,涉及误差分析、方程求根、线性方程组数值解法、插值法、曲线拟合、数值积分与数值微分、常微分方程数值解法和矩阵特征值及特征向量的计算。书末附一份模拟试卷及其参考答案。 《计算方法与实习学习指导与习题解析(第2版)》可作为理工科大学生学习计算方法课程的参考书。